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ABSTRACT 
 
Numerous complex real-world applications are either theoretically intractable or unable to be 
solved in a practical amount of time.  Researchers and practitioners are forced to implement 
heuristics in solving such problems that can lead to highly sub-optimal solutions.  Our research 
focuses on inserting a human “in-the-loop” of the decision-making or problem solving process in 
order to generate solutions in a timely manner that improve upon those that are generated either 
solely by a human or solely by a computer.  We refer to this as Human-Machine Collaborative 
Decision-Making (HMCDM).   

The typical design process for developing human-machine approaches either starts with a 
human approach and augments it with decision-support or starts with an automated approach and 
augments it with operator input.  We provide an alternative design process by presenting an 
HMCDM methodology that addresses collaboration from the outset of the design of the decision-
making approach.   

We apply this design process to a complex military resource allocation and planning 
problem which selects, sequences, and schedules teams of unmanned aerial vehicles (UAVs) to 
perform sensing (Intelligence, Surveillance, and Reconnaissance – ISR) and strike activities 
against enemy targets.  Specifically, we examined varying degrees of human-machine 
collaboration in the creation of variables in the solution of this problem.  We also introduce an 
HMCDM method that combines traditional goal decomposition with a model formulation into an 
Iterative Composite Variable Approach for solving large-scale optimization problems.  Finally, 
we show through experimentation the potential for improvement in the quality and speed of 
solutions that can be achieved through the use of an HMCDM approach. 
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Chapter 1  
 

Introduction 
 
1.1 Problem Statement 
Even with increases in computational power, advances in algorithms, and the 

development of more complex modeling capabilities, there remain numerous applications 

that are either theoretically intractable or unable to be solved in a practical amount of 

time.  When attacking such problems, researchers and practitioners are forced to 

implement heuristics.  This approach has a significant limitation in that the heuristics 

invariably lead to sub-optimal solutions.  An alternative to employing this approach, or as 

an augmentation to this approach, is to analyze problems and look for areas to insert a 

human “in-the-loop” of the decision-making or problem solving process.  The objective 

is to decide how to allocate decisions intelligently and at what level of automation [29] to 

place these decisions.  The goal of this approach is to combine the intuition and 

experience of a human with the computational speed of a computer system in order to 

generate solutions in a timely manner that improve upon those that are generated either 

solely by a human or a computer.  Improved solutions include those with more “value” or 

those with the same value but which are generated more quickly.  We refer to this process 

as Human-Machine Collaborative Decision-Making (HMCDM).   

 

1.2 Motivation 
There are four classes of problems which we believe will benefit from HMCDM.  We 

refer to the first class of problems as combinatorial problems.  These are problems that 

are impractical to solve to optimality due to a sufficiently large search space.  That is, the 
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size of the search space is such that it prevents the problem from ever being solved to 

optimality or that it requires an unacceptably long amount of time for the computer to 

exhaustively search the space.  In this case, a human might be able to assist by narrowing 

or focusing the search space; a process similar to pruning a decision tree. 

We refer to the second class of problems as visual problems.  Visual problems are 

those that take an inherently visual form and those that are abstract but could ultimately 

be represented visually.  Some examples of inherently visual problems include 

geographical clustering, image classification, regression or curve fitting, and small graph 

problems.  An example of an abstract problem that may be represented visually would be 

a problem that is solved by an iterative process in order to arrive at a final solution.  As a 

by-product of the iterative process, there is a solution or solutions generated at each step.  

Presenting to the human operator an appropriate visual representation of the current 

solution(s) at each iteration might enable the operator to guide the process toward 

optimality or choose certain pieces of the solution to “hold onto” for the next iteration.   

Problems in which a human monitors the amount of machine computation effort 

could also benefit from HMCDM.  We refer to this third class of problems as 

computationally intensive problems.  The human could monitor the process, identify a 

point of diminishing return and stop the computer from searching for new solutions.  The 

thought is that humans have good intuition when weighing the cost of further 

computation versus the potential benefit of this added computation to the overall solution 

value.   The ability of a human to control the computational effort dynamically might 

prove more effective than a fixed strategy.   

Finally, by applying HMCDM, problems whose solution approach employs a 

large number of different heuristics stand to benefit as well.  We refer to this fourth class 

of problems as heuristic-heavy problems.  Because the use of different heuristics can lead 

to different solutions, a human can choose which heuristic to select and when to select it.  

A more complex approach might allow the operator to adapt heuristics dynamically as a 

function of the problem or during the evolution of the solution (see the discussion of 

iterative approaches above).  This may result in better solutions than if a fixed approach 

to applying heuristics were used.   
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In addition to applying HMCDM to problems in the hope of generating “better” 

solutions, it is necessary to also employ such an approach in problems that may already 

be solved completely with the sole use of a computer or a machine.  One key to obtaining 

usable and effective solutions is that system users or program operators understand and 

trust the generated solutions; neither of which is guaranteed with solutions created 

entirely by a computer.  If two identical solutions are generated for a particular problem, 

one created exclusively by a computer and one created via human-machine collaboration, 

a human will be more likely to accept the solution in which they were involved in the 

decision making process [20] [26] [27]. 

 

1.3 Thesis Problem 
For this thesis, we will study the application of HMCDM for a military command and 

control (C2) system for resource allocation and planning.  The experiments conducted for 

this research build on software developed previously for the Defense Advanced Research 

Projects Agency (DARPA) Mixed-Initiative Control of Automa-teams (MICA) program 

designed specifically to simulate a C2 system of resource allocation and planning.  The 

MICA solution is a closed-loop, dynamic planning and execution system intended to aid 

a human in making decisions about courses of action related to military planning.  The 

initial inputs into MICA are a list of assets, resources associated with those assets, enemy 

targets, and Commander’s Intent.  Based on this information, the goal is to select, 

sequence, and schedule sensing (Intelligence, Surveillance, and Reconnaissance – ISR) 

and strike activities for the available aircraft resources to address enemy targets in an 

effort to maximize the total expected value minus cost.  

This application contains every one of the classes of problems for which 

HMCDM might be helpful.  First, this problem is extremely complex and, thus, difficult 

to solve.  One reason for the difficulty is the large search space resulting from the vast 

number of decision variables.  Another is the fact that many of these variables change 

dynamically.  In addition to variables changing over time, there are many probabilistic 

aspects of the problem.  For example, there is uncertainty about the location of the enemy 

targets, identification of targets, effectiveness of weapons used on particular targets, and 

the damage state of targets.  This makes it impossible to enumerate all possible decision 
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variables and outcomes and then apply some computer algorithm to solve the problem.  

The problem also lends itself to being naturally portrayed in a visual manner.  The 

geographical layout of the scenarios that include the enemy targets and friendly resources 

is easily represented in a map-based Graphical User Interface.  In addition, the MICA 

problem could benefit from having a human control the amount of computation time 

spent on various subproblems throughout the system.  The thought is that a human can 

effectively manage the computational effort expended on problems.  Research at 

Mitsubishi Electric Research Labs [4] [27] has shown that humans can successfully 

weigh the cost of further computation versus the potential benefit of this computation.  

Finally, the MICA problem contains a large number of heuristics.  The purpose of the 

system is to plan missions involving numerous friendly resources and enemy targets in 

real-time.  This large and dynamically changing problem is therefore more easily solved 

using heuristics instead of other techniques. The application in this thesis deals with 

determining how humans and computer optimization algorithms can complement each 

other to provide viable solutions in such time critical resource allocation and planning 

scenario.   

 

1.4 Contributions 
In order to appreciate the benefit of having humans and machines collaborate together 

when solving optimization problems, it is first necessary to understand the traditional 

human-machine decision making interaction.  In general, there have been two approaches 

to human-machine problem solving; we will refer to these as the human factors approach 

and the algorithmic or optimization approach.  In the human factors approach, systems 

are designed from a human’s perspective in that their main focus is on the human while 

they attempt to use computer technology or automation to augment, mimic or enhance the 

human’s approach to solving the problem.  On the other hand, the algorithmic or 

optimization approach typically focuses on an algorithmic approach to solving the 

problem – one that is, at least initially, developed without consideration of human 

participation in problem solving.  Thus, algorithmic approaches attempt to model as 

much as possible and assign whatever remains to the human operator.  There has been 
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limited work in trying to exploit the strengths of both the computer and human from the 

outset.  

When algorithmic approaches are applied to optimization problems in particular, 

the human involvement is typically very limited.  In the design phase, a human (problem 

formulator and algorithmic designer) is tasked with understanding the physical 

constraints and objective and translating these into mathematical equations and lines of 

computer code.  A human might also be involved in the actual operational phase, but 

again in a limited manner.  Typically, this involvement is limited to a user inputting some 

initial data or parameters and then allowing the computer to solve the problem.  

It is remarkable that there has been little work done in both the general HMCDM 

area and more specifically in applying HMCDM to optimization problems.  This thesis 

contributes to filling that void in the following ways: 

• Typical human-machine approaches start with a human process and 

augment it with decision-support, or start with an automated process and 

augment it with operator input.  We provide an alternative to these 

approaches by presenting an HMCDM methodology that addresses 

collaboration from the outset of the decision-making design process. 

• We apply this approach to a complex military resource allocation and 

planning problem and show through experimentation the potential for 

improvement in the quality and speed of solutions. 

• We update and build upon previously accepted lists of human and computer 

strengths and capabilities. 

• We build upon previous research to propose a methodology for determining 

the optimal level of automation when allocating decisions in a system or 

algorithm. 

• We introduce a method for combining traditional goal decomposition [10] 

[3] with composite variable formulation [5] into an Iterative Composite 

Variable Approach for solving large-scale optimization problems. 
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1.5 Thesis Overview and Content 
The individual chapters are summarized as follows: 
  

Chapter 2: Previous HMCDM Research 
 In this chapter we provide a review of previous research conducted 

in the realm of Human-Machine Collaborative Decision Making.  A focus 

of this chapter is Sheridan and Verplank’s 10 levels of human-machine 

automation [29].  In addition, the chapter outlines research pertaining to 

human-machine decision allocation which addresses who (human or 

machine) should be making which decisions throughout a system or 

problem solving process.  We also update and build upon the currently 

accepted human and computer respective strengths and capabilities.  This 

chapter ends with our proposed method for determining not only who 

should be making which decisions throughout a problem solving process 

but also at what level of automation these decisions should be made.  A 

brief example is given at the conclusion of this chapter in which we apply 

our methodology to the resource allocation and planning problem which 

we will use later in the thesis as our test-bed for human-machine 

interaction.   

 
 Chapter 3: MICA System 
 The purpose of this chapter is to provide an overview of the 

Mixed-Initiative Control of Automa-teams (MICA) system which is the 

platform for our human-machine collaboration experiments.  We provide 

background information as to why the system was created as well as a 

breakdown of the three-tiered hierarchical decomposition planning 

algorithm it employs.  In addition, we introduce the concept of composite 

variables which was presented in [5] and will be explored in further detail 

in Chapter 4.  We conclude the chapter by outlining particular 

subproblems within the MICA system that might benefit the most from 

applying HMCDM. 

   
 



 21

Chapter 4: Large Scale Optimization –  
Goal Decomposition & Composite Variable Formulation 
Two popular techniques for solving large scale optimization 

problems such as the MICA C2 problem are goal decomposition and 

composite variable formulation.  This chapter explains both methods as 

well as describes their similarities and differences.  We discuss their 

respective strengths and weaknesses in the context of addressing complex 

large-scale optimization problems.  Finally, we outline a proposed strategy 

for incorporating both methods in an HMCDM context.  We call this 

strategy the Iterative Composite Variable Approach.  We end the chapter 

by describing how this approach can be used in the MICA application to 

generate “better” solutions. 

 
Chapter 5: Setup of Experiments 

 In this chapter we outline the setup of the MICA HMCDM 

experiments along with our goals and hypotheses.  We introduce the 

concept of Key Pieces of Information (KPI), information that is generated 

by the computer for the human to use in aiding their task of creating 

clusters of enemy targets.  We provide a flow of the experiment along with 

visual images from the MICA system to elucidate the process through 

which our experiment subjects proceeded. This chapter also details the 

metrics that are used for evaluating human involvement.  

 

Chapter 6: Results of Experiments 
 We present an explanation and rationale for each of the five 

scenarios used in the MICA HMCDM experiments.  This chapter also 

includes all data output from the respective scenario experiments.  We 

provide analysis of the HMCDM experiments and discuss the benefits of 

human-machine collaboration over both ‘computer only’ and ‘human 

only’ approaches.    
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Chapter 7: Summary and Future Work 
We conclude the thesis with a chapter summarizing both the 

general concept of Human Machine Collaborative Decision Making as 

well as the empirical results obtained from the HMCDM MICA 

experiment.  We also discuss future research in this chapter. 
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Chapter 2  
 

HMCDM Review 
 

This chapter reviews previous research in the field of Human-Machine Collaborative 

Decision Making (HMCDM).  Various techniques for determining the optimal allocation 

of human-machine decision-making are outlined.  We also review and augment existing 

characterizations of human and computer strengths and capabilities.  Another significant 

area of research covered in this chapter is Sheridan and Verplank’s 10 Levels of 

Automation of Decision and Action Selection [29].  We also augment Sheridan, 

Parasuraman, and Wicken’s list of Evaluative Criteria [28] - factors that are considered 

when determining the level of automation that should be employed in executing a certain 

task or making a certain decision.   

The limited existing research pertaining to the application of HMCDM to 

optimization problems is highlighted in this chapter.  The chapter ends with the 

description of a Level of Automation methodology developed during the course of this 

thesis research for determining not only who1 should be making which decisions but also 

at what level of automation these decisions should be made.  The chapter concludes with 

a brief example of the application of our methodology to the resource allocation and 

planning problem described in Chapter 3 and used during the course of this thesis 

research.  

 

2.1 Previous HMCDM Research 
Typical approaches to the design of human-machine collaboration either start with a 

human process of problem solving and augment it with decision-support, or start with an 

                                                 
1 Throughout the thesis,  “who is making the decision” refers to either a human or a machine  
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automated process and augment it with operator input.  There has been limited research 

addressing human-machine collaboration that has a starting point that is neither a human-

centered nor a machine-centered approach to the decision making process.  Our 

hypothesis is that such an approach ultimately allows for more tightly coupled and 

synergistic interaction between human and machine.  To design such a system, an 

intelligent choice as to which decisions and actions might be allocated to human 

operators and which might be allocated to computer resources must be made at the outset.  

Note that this allocation is not meant to be exclusive in that there is likely to be a subset 

of decisions that might be appropriate for either operator or machine.  It is that subset that 

presents the significant design challenge.  That is, when (i.e., under what circumstances) 

should those decisions be allocated to operator alone, to machine alone or to a 

collaborative effort of operator and machine.  A variety of approaches have been 

developed for determining the “proper” allocation of decisions including:  ad hoc 

approaches [18] , formal approaches which include the comparative assessment of human 

and machine performance using qualitative listings [18] [15] [32], balanced approaches 

which are a combination of ad hoc and formal [22], two-dimensional capability scaling 

graphs [25], and varying levels of human-machine collaboration [29].  Each of these is 

discussed in more detail in the following sections. 

 

2.2 Background on Allocation Approaches 

2.2.1 Ad Hoc Decision Allocation Approach 
The first approach, referred to as the "ad hoc" or “gut feel” approach, assumes that the 

decision allocations in existing systems are satisfactory, and that only minor changes to 

their level of automation are required for improved performance.  Although 

hypothetically changes could be made to either increase or decrease the level of 

automation, typically changes are made to increase the computer involvement in such ad 

hoc systems.  The decision or action allocations are based on the economically available 

level of automation, and are made almost entirely on criteria such as cost, availability, 

reliability, and compatibility of hardware and software.  Decisions in the existing system 

are examined in order to determine if changes should be made as to who is making the 
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decision.  However, no thorough analysis has been conducted in order to come to this 

conclusion.  Rather, it is determined solely on a “gut feel” or “trial and error” basis. 

The advantage of such an approach is that it is simple, involves minimum effort 

and is reported to be low cost [18].  Unfortunately, this approach has numerous 

disadvantages.  The first is that such an approach lacks standardization.  Different 

opinions by separate managers, designers, or operators may result in extremely different 

outcomes as to who is given control over certain decisions.  The typical outcome of such 

an approach is that decisions are allocated to the machine on the basis of what can be 

done by machine, leaving the human to perform whatever is left that cannot be done by 

machine (at least cost effectively).  This poses a potential problem in that the "left over" 

tasks may not form a coherent set.  Finally, the analysis typically addresses one decision 

at a time and does not necessarily evaluate how that decision will affect other 

interconnected decisions throughout the system.  Thus, the ad hoc approach is likely to be 

ineffective for complex decision making systems.   

 

2.2.2 Formal and Balanced Decision Allocation Approaches 
An alternative to the ad hoc approach has been called the "formal approach" [18].  This 

formally allocates each system decision to either a human or a machine using a rational 

decision making technique.  Although the formal technique does not ensure the optimum 

allocation of decisions, it goes beyond the informal, or "gut feel," method which is so 

often used.  More detail of formal approaches will be outlined in Section 2.3.  

Neither the ad-hoc nor the formal approaches are strictly followed in practice: 

what usually happens is referred to as a “balanced approach” which is a combination of 

both the ad hoc and formal approaches [18].  This approach accounts for political, 

managerial, and performance constraints on certain decisions that are to be made.  For 

example, some decisions must be assigned to humans for political, legal or doctrinal 

reasons (e.g., the military deciding to release certain types of weapons).  Furthermore, 

some decision allocations may be dictated by performance requirements, such as the need 

to respond in a limited time, the need to maintain operator skills, or the space and weight 

constraints associated with accommodating human operators.  The ad hoc approach can 

be used to ensure such political, financial, managerial, and performance constraints.  This 
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leaves a much smaller set of decisions or actions to be addressed by a formal analysis.  

Meister [22] outlines the balanced approach as the five stages, shown in Figure 2-1.  

The balanced approach is a better reflection of how decisions are typically 

assigned on major projects than either the ad hoc or the formal approaches.  Note that 

Meister’s outline calls for the use of formal techniques to be used in the third and fourth 

steps of his algorithm.  

Describe alternative 
ways of allocating 

remaining decisions

Determine decisions that 
are already allocated or 

that are constrained

Establish 
criteria for 
evaluating 

alternatives

Compare the alternative configurations

Select the most cost 
effective allocation 

configuration

 

  Figure 2-1: Five Stage Approach to Decision and Action Allocation  
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2.3 Formal Approaches 

2.3.1 Fitts List   
The first formal technique is based on what has come to be known as Fitts List [15].  It 

was created by P.M. Fitts in 1951 and has been widely referenced in literature since.  His 

technique for determining which decisions should be carried out by machines versus 

which should be performed by humans is based on a simple dichotomous comparison of 

human and machine capabilities.  He identified inherent strengths and weaknesses in both 

humans and machines.  In many cases the strengths of one are the weaknesses of the 

other, so they compliment each other well.  By exploiting the strengths and compensating 

for the weaknesses of both the human and computer, we are able to generate better 

solutions than either could produce alone.   

Fitts’ List, Table 2-1, was the original list of categories of man/machine 

capabilities, and it has been used as the baseline for many subsequent capability 

comparisons.  Fitts’ List is used as a guideline to produce an allocation of which 

decisions and actions are to be done by a human and which to are be done by machine, 

with each system decision being expressed in terms that allow the designer to associate it 

with one or more of the categories of man/machine capabilities contained in the list.   

Humans appear to surpass present-day machines with respect to the following: 
• Ability to detect small amounts of visual or acoustic energy
• Ability to perceive patterns of light or sound 
• Ability to improvise and use flexible procedures 
• Ability to store very large amounts of information for long periods and to recall relevant facts 
at the appropriate time
• Ability to reason inductively 
• Ability to exercise judgment

Present day machines appear to surpass humans with respect to the following: 
• Ability to respond quickly to control signals, and to apply great force smoothly and precisely 
• Ability to perform repetitive, routine tasks 
• Ability to store information briefly and then to erase it completely 
• Ability to reason deductively, including computational ability
• Ability to handle complex operations, i.e. to do many different things at once 

 
Table 2-1: Fitts List 
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Machine capabilities have matured significantly in the past 55 years, making parts 

of Fitts’ List obsolete.  As a consequence, there have been many updates to the list over 

the years.  For example, Table 2-2 is a list published 37 years later by the U.S. 

Department of Defense [32].   

The advantage of using a capabilities list to determine who should make decisions 

is that it is simple and requires little training to use.  In practice the list is a convenient 

framework for considering the allocation of decisions.  It aids people unfamiliar with 

human factors to think systematically about the functions assigned to human operators.  

The list is a good first step or reference point when deciding which decisions should be 

allocated to a human and which should be allocated to a machine.   

The disadvantages of relying solely on such a list are numerous.  The main 

drawback is that the approach uses qualitative terms only.  There is no quantitative metric 

to scale how much better a machine or human performs a certain action or what is 

actually defined as “a strength.”  In reality, when used alone, it is of limited help.  It may 

also be difficult to relate the system actions or decisions to the limited list if the list is not 

comprehensive.  In reality when deciding whom to allocate decisions to, there are 

numerous other trade-off factors to consider such as cost, affects on operators, support 

requirements, workload restrictions, etc.  These factors are discussed in Section 2.4 as 

they are all Evaluative Criteria that should be used in finalizing the decision allocation.   
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HUMAN EXCELS IN MACHINES EXCEL IN 
    
Detection of certain forms of very low energy 
levels Monitoring (both men and machines) 

    
Sensitivity to an extremely wide variety of 
stimuli 

Performing routine, repetitive, or very 
precise operations 

    
Perceiving patterns and making generalizations 
about them Responding very quickly to control signals 

    
Ability to store large amounts of information for 
long periods, and recalling relevant facts at 
appropriate moments 

Storing and recalling large amounts of 
information in short time periods 

    
Ability to exercise judgment where events cannot 
be completely predicted 

Performing complex and rapid computation 
with high accuracy 

    

Improvising and adopting flexible procedures 
Sensitivity to stimuli beyond the range of 
human sensitivity (infrared, radio, waves, 
etc.) 

    
Ability to react to unexpected low-probability 
events Doing many different things at one time 

    
Applying originality in solving problems: i.e., 
alternative solutions 

Exerting large amounts of force smoothly 
and precisely 

    
Ability to profit from experience and alter course 
of action Insensitivity to extraneous factors 

    

Ability to perform fine manipulation, especially 
where misalignment appears unexpectedly 

Ability to repeat operations very rapidly, 
continuously, and precisely the same way 
over a long period 

    

Ability to continue to perform when overloaded Operating in environments which are hostile 
to man or beyond human tolerance 

    
Ability to reason inductively Deductive processes 

Table 2-2: More Recent Human-Machine Capability List 
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2.3.2 Price’s 2D Scale 
Another formal approach is the one developed by Price [25] that offers a slight alternative 

to the simple dichotomy of Fitts’ List that is based on scaling human and machine 

capabilities.  This two-dimensional model (Figure 2-2) rates human and machine 

capabilities from ‘unsatisfactory’ to ‘excellent.’  The resulting model identifies six 

different regions that correspond to different cases of human-machine capabilities’ 

comparisons. 

• In region 1, there is little difference in the relative capabilities of human and machine, 

and the decision allocation can be made on the basis of criteria other than relative 

performance.  

• In region 2, human performance exceeds machine performance; the decision should be 

made by the human.  

• In region 3, machine performance exceeds human performance; the decision should be 

made by the machine. 

• In region 4, machine performance is so poor that the decision should be allocated to 

humans.  

• In region 5, human performance is so poor that the decision should be allocated to 

machine.  

• In region 6 the decision would be performed unacceptably by both human and machine, 

arguing for a different design approach.   
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Figure 2-2: Criteria for Allocating Decisions to Human or Machine  

 

Although this model supersedes the simple capabilities comparison listing 

suggested by Fitts, Price never mentions how one would go about deciding where on the 

subjective sliding scale to place the corresponding performance.  Another obvious 

drawback of this approach is that what one person identifies as having ‘excellent’ human 

performance might be viewed by another as only having ‘very good’ performance.  This 

could result in different regions (say region 2 vs. region 1) which would cause each 

separate user to come to a different conclusion regarding to whom to allocate the 

decision.   
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2.4 Sheridan & Verplank Autonomy Scale 
Sheridan & Verplank enhanced previous approaches to decision allocation by 

incorporating the idea of collaboration between a human and machine to make decisions.  

They point out that a decision does not have to be made solely by a human or solely by a 

computer but that there are intermediate levels of automation that allow for cooperation 

between a human and computer.  They have proposed that human-machine interaction 

can be characterized by a continuum of levels rather than as an all-or-none concept [29].  

Under full manual control, a particular function is controlled by the human, with no 

machine control.  At the other end of the spectrum corresponding to full machine control, 

the machine decides everything, including its own monitoring, ignoring any human input.  

Sheridan & Verplank’s autonomy scale is presented in Figure 2-3. 

For example, at Level 2 automation, the computer provides the human with 

several options but does not choose which decision will be made.  At Level 4, the 

computer offers one potential alternative to the human but the ultimate authority on 

which decision to make lies with the human operator.   

 

 

Figure 2-3: Sheridan and Verplank’s 10 Level Autonomy Scale 

 

LOW 

HIGH 
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2.5 Evaluative Criteria  
Another idea proposed by Sheridan was that of using Evaluative Criteria when making 

the final determination of the level of automation.  The purpose of the evaluative criteria 

is to account for intangible factors when determining how much control humans and 

machines should have over certain decisions.  These criteria cover a variety of important 

factors ranging from human performance aspects to issues such as cost and levels of risk.  

Sheridan, Parasuraman, and Wickens broke down these criteria into the Primary and 

Secondary Evaluative Criteria [28] described in the following. 

 

2.5.1 Primary Evaluative Criteria 
• Mental Workload – A human operator can only handle a finite amount of work before 

reliability and production start to decline.  One needs to measure mental workload in 

order to determine whether the induced workload exceeds the overall level of 

workload a controller can deal with effectively. 

• Situational Awareness – Human situational awareness can either increase or decrease 

with increased automation.  Increased automation can decrease situational awareness 

about the decisions that are being automated but can free the operator to provide more 

time to improve situational awareness by monitoring other actions or participating in 

other decisions throughout the system. 

• Complacency – Complacency occurs when humans become over reliant on the 

machine.  If the human over-trusts the automation, they might fail to realize the 

occasions when the automation fails.  To prevent this, mechanisms should be 

established to provide the human with insight into decisions made by the automation. 

• Skill Degradation – If a human user does not use a certain skill over a long period of 

time and is simply monitoring the computer’s activities, there is a good chance the 

humans’ skills will degrade.  One has to question how sharp the user will be if there is 

an emergency or computer malfunction and the decision or action must suddenly 

revert from automated to manual.  An example of skill degradation being taken into 

account occurs with airline pilots.  In order to keep their skills sharp they are required 
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to manually conduct a specified number of landings each month.  If they were to use 

the autopilot to land every time, then eventually their aircraft landing skills would 

decrease.   

 

2.5.2 Secondary Evaluative Criteria 
• Automation Reliability – Increases in automation benefit a human by heightening 

their situational awareness to be used on other problems or decisions in the system.  

In systems where there are not other problems or decisions, these increases in 

automation can benefit by decreasing a human’s mental workload.  However, these 

benefits are unlikely to accrue if the computer or algorithm is unreliable.  In 

unreliable systems, the mental workload actually increases for humans while their 

situational awareness decreases because time must be spent to determine if the results 

received were correct or not. 

 

• Costs of Decision/Action Outcome – It is important to consider the costs that occur if 

the actions that the human or computer take are incorrect or inappropriate. 

      

2.6 HMCDM Research Applied to Optimization 
The research outlined above has a very general and broad scope.  The views and ideas are 

aimed at any system that might have a human and machine component.  The research 

focused solely on human-machine collaboration in solving optimization problems is 

much more limited.  However, the research that has been conducted shows that HMCDM 

can be effective at producing improved optimization solutions [4] [27] [33].  The key 

issue in optimization problems is the same as it is in any more general system: determine 

the best division of labor between human and computer participants.  Existing research in 

human-machine optimization has taken different approaches at establishing this division 

of labor. 

Interactive evolution is an iterative approach wherein at each stage of the solution 

process the solutions are generated by the computer and the human selects which of these 

solutions will be used by the machine to generate new solutions in the next iteration [19] 
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[30] [31].  This process falls somewhere between Level 2 and Level 3 on Sheridan and 

Verplank’s Autonomy Scale.  Colgan et al. [14] developed a system wherein the human 

dynamically changes the parameters of the system used to evaluate candidate solutions.  

They describe a system for evaluating the choice of circuit design parameters where they 

allow the user to visualize the interrelationships and sensitivities of the various 

parameters.  The focus is on helping the user identify the parameters that are most 

important to study, rather than on choosing specific parameter values.  Other approaches 

permit users to manually modify the computer-generated solutions [33] [12].  They place 

little or no restrictions on the human-initiated modifications, and employ heuristics to 

resolve constraint violations that may be introduced by the user.  

Research on human-machine collaboration in optimization has also been 

conducted at the Mitsubishi Electric Research Laboratory. Their studies suggest that 

humans are effective at guiding and focusing searches, managing machine computational 

effort, and visually identifying promising areas of a solution search space [4] [27].  

 

2.7 Additions and Enhancements to Previous HMCDM 
Research 

2.7.1 Current Capability Strength Lists 
Many of the capabilities identified as human and machine strengths by Fitts and the DoD 

are still valid.  However, there are capabilities that were never mentioned in these earlier 

lists that seem applicable today.  For example, humans are particularly strong in areas 

such as communicating complex ideas, symbolic reasoning, conceptualization, learning 

from experience, and intuition.  Humans are able to store and adapt experience and 

quickly grasp the overall picture of complex situations.   Their ability to recognize 

patterns is applicable not only to visual stimuli but also to abstract concepts and intuitive 

notions.   

Although the biological basis of our cognitive abilities is massively parallel, our 

conscious reasoning capabilities are essentially sequential [11].  Therefore, human 

decision makers are easily overwhelmed by large volumes of information and very 

complex decision scenarios where each decision may have many unobvious interactions 



 36

with other decisions or actions.  It is difficult for a human to analyze more than three or 

four variables at any one time, especially when these variables interact (combinatorial 

problems).  Under these circumstances, humans tend to switch from an analysis mode to 

an intuitive mode in which they rely almost completely on their ability to develop 

situation awareness and make decisions through abstraction and conceptualization.  

While this is a noteworthy strength of humans it is also potentially a great weakness.  At 

this intuitive level, instead of working objectively toward an optimal decision, humans 

are vulnerable to emotional influences that are an intrinsic part of human nature [11]. 

The tendency to rely on emotions can make the human operator somewhat 

unpredictable and resistant to dynamically changing situations.  Confidence in one’s 

ability to deal with complex and critical situations is based to a large extent on past 

experience with similar problem situations.  Therefore, if the situation is continually 

changing, humans are less likely to be able to rely on past experiences and as a result feel 

less confident in being able to successfully deal with the changed situation. 

Computer capabilities are strongest in the areas of data management, speed and 

accuracy.  Machines also excel in parallelism; meaning that a computer can conduct 

multiple functions and calculations at once whereas humans have the problem of losing 

focus or becoming confused as to which task they are working on.  Computers also have 

an enormous capacity for storing data.  While a human is prone to making minor 

mistakes in arithmetic and reading, the computer is always accurate.  For example, a 

slight diversion may be sufficient to disrupt a human’s attention to the degree that causes 

the incorrect adding or subtracting of two numbers.  However, human’s make up for this 

weakness by being able to notice when large errors occur due to the ability to use 

common sense.  Unfortunately, the computer cannot distinguish between a minor mistake 

and a major error.   
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Figure 2-4: Human and Machine Capability Strengths 

 
Sections 2.7.1.1 and 2.7.1.2 provide listings of current human and machine 

capabilities.  These listings are not meant to be inclusive of all human and machine 

capability strengths.  Rather they are provided to highlight the relevant capabilities that 

were taken into consideration in the problem application presented later in the thesis.    

2.7.1.1 Human Capability Strengths 
Flexible/Adaptable – Humans are much more flexible and adaptable to situations that 

arise in real life.  Computers will only do what they are programmed to do.  Humans are 

able to adjust readily to changing conditions. 

 
Creativity – Humans have the ability to think outside the box and display originality and 

imagination.  They are also able to apply off-topic knowledge that may be useful to the 

situation. 

 
Visual Perception – Humans are excellent at visual perception.  In fact, human reasoning 

and learning abilities stem, in part, from our ability to visually perceive.  On the other 

hand, while objects can be fairly easily represented in the computer as visual images and 
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data relationships, the computer has a great deal of difficulty in understanding their real 

world meaning.   

 
Emotion – This allows a decision maker to consider abstract concepts that might not be 

easily modeled by a computer instead of relying solely on a computer’s objective output.   

 
Learning From Experience – A human can analyze a situation or scenario and rely upon 

their previous experience to help them in two ways.  They can either quickly narrow the 

“search space” of options by discarding options that they know will not work in a certain 

situation or they can make a concrete decision by knowing that a particular action will 

work based on prior experience.  Although there has been significant progress in the AI 

community with respect to machine learning, humans still clearly are superior on this 

dimension.   

 
Complex Communication – A computer is limited in its ability to communicate with a 

human via sound through the speakers and printouts or visualizations on the screen.  

Inter-Human communication on the other hand is much more complex involving such 

things as tone of voice, hand and face gestures, and mannerisms just to name a few.  

 
Conceptualization – Humans have the ability to invent or contrive an idea and formulate 

it mentally.  This is the mental process whereby fuzzy and imprecise notions are made 

more specific and precise.  Even with recent advances in artificial intelligence, computers 

are not able to compete with a human in this area. 

 
Symbolic or Spatial Reasoning – This strength is related to strengths of visual perception 

in that humans are able to relate to and understand information and scenarios using visual 

stimuli only.  Humans have the ability to manipulate abstract symbols mentally and use 

them to make judgments and decisions that are logically valid.   

Intuition – The fact that humans have seen many different situations throughout their 

lifetimes and can remember experiences gives them instinct and allows them to rely on 

this intuition when making decisions.  This instinctive knowledge can reduce the amount 
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of time needed to make a decision.  Without the benefit of intuition, computers are forced 

to proceed through a possibly more time consuming rational process.  

Pattern Recognition – This capability refers to the classification or description of 

observations.  For the purposes of our research, we are specifically interested in a 

human’s ability to recognize patterns with respect to cluster analysis.  Recent work in the 

AI community has increased the machine’s capability to recognize patterns, but the 

human still has the edge in this area.   A human can also recognize patterns of behavior 

and extrapolate to predict future behavior.   

 
Hedging Against Uncertainty – A prerequisite for being able to hedge against uncertainty 

is the ability to anticipate “possible” future states.  People have this ability to guess where 

things can go wrong and hedging against these possible problems.  Humans have a store 

of what is often referred to by the AI community as “common sense knowledge” [21], 

that they bring to bear in assessing what might go awry in a given situation.  It’s difficult 

to model in the computer all of the things that might go wrong – and thus, computer 

methods cannot predict what hasn’t been modeled.  This is particularly true to the 

specific air operations application presented in this thesis.  If we tried to code up an 

exhaustive list of all possible things that could go wrong or ‘possible states of the world,’ 

and then solve a stochastic program on these states of the world, it would be 

computationally intractable.  On the other hand, if a human looks at the scenario and 

realizes where the problems might occur with a high degree of probability and feeds this 

information to the computer, the computer solution might be much better and would 

certainly be obtained much faster. 

 
Narrowing Search Space – Experiments done by Mitsubishi Electric Research Labs 

(MERL) [4] [27] have shown that a human can effectively narrow the space to search for 

optimal solutions.  The experiments were run with humans in the loop of a capacitated 

vehicle routing with time windows problem. 

 
Management of Computational Effort –MERL’s experiments [4] [27] also showed that a 

human operator is very effective in managing the computational effort expended on 
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problems.  They showed that humans are able to accurately guess the point of 

diminishing returns in the search for a solution. 

 
Strategic Assessment – Compared to a computer, a human is able to bring a broader range 

of strategies to the table.  It is impossible for a computer to employ problem solving 

strategies beyond that which it is programmed to consider.  A human has the ability to 

think critically about the situation and consider more strategies. 

 
Understanding the “Big Picture” – Many of a human’s other strengths combine into 

making a human good at understanding the big picture.  The big picture refers to 

understanding the impact of the solution on the world outside of the “system” for which 

that solution has been developed.  This is something a computer cannot do well.   

2.7.1.2 Computer Capability Strengths 
Displaying Information – This could be a geographical representation of information or 

any other visual representation of data or information.  For example, when applied to air 

operations, a computer can generate a graphical representation of where all of our targets 

are located on a map and a visual list of the targets to help facilitate clustering.  A 

computer is better, more flexible and faster at generating a display of this information 

than is a human. 

 
Data Management – Includes storing and retrieving data - the only limiting factor in the 

amount of data to be stored in a computer is its’ own internal hard drive capacity. 

 
Simple Repetitive Decisions – Once a computer is programmed to perform a certain 

action or calculation, it can do so whenever asked.  This makes computers very effective 

at performing simple repetitive decisions.  In contrast, there is a chance that humans may 

make small errors or not perform the action in the exact same manner each time.   

 
Performing Calculations – Computers are better at doing mathematical calculations.  

They are both more accurate and faster than a human in this area especially when 

performing long or complex calculations. 
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Combinatorial Problems – These are problems with a large number of variables.  Due to 

the extremely large nature of combinatorial problems, a computer is much better at 

solving these types of problems.  It is very difficult for a human to obtain a solid grasp on 

the problem because of the sheer number of possible solutions.   

Continuous Availability – Computers are an untiring resource.  They can be utilized 24 

hours a day, 7 days a week, 365 days a year.   

Fast Computational Parallel Reasoning – Computers are able to simultaneously conduct 

numerous operations at the same time.  For example, a computer is able to perform 

numerous calculations simultaneously whereas most humans must perform them 

sequentially.  It is more difficult for a human to “multi-task.” 

Speed – Computers are much faster than humans at many different tasks.  High levels of 

computer involvement could be necessary in time-critical situations in which there might 

not be adequate time for a human to respond and take appropriate action.   

Accuracy – As mentioned earlier, humans are prone to making minor mistakes in 

arithmetic, whereas the computer is always accurate. 

Predictability – A computer performs what a human has programmed it to do.  In 

addition to being a drawback as mentioned earlier, this also provides a benefit in the form 

of predictability.  This predictability stems from the fact that computers are built on a 

simple ‘0’ and ‘1’ system.  There is no degree of vagueness here, ‘0’ and ‘1’ are precise 

digital entities and very different from the massively parallel and largely unpredictable 

interactions of neurons and synapses that drive human behavior.   

Low Cost – One of the main drivers behind the desire to raise levels of automation in 

systems today is that it can be cost-effective.  There may be a high initial cost, but 

automating tasks and decisions can be a good long term investment. 

Risky Situations – Computers or machines can be an effective means to replace humans 

in risky situations.  A military related example is the recent push to increase the use of 
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unmanned aerial vehicles in place of piloted fighter aircraft to accomplish dangerous 

missions, risking the possible loss of a machine rather than a human life.   

  

2.7.2 Proposed Additional Evaluative Criteria 
In addition to Sheridan, Parasuraman, and Wicken’s Evaluative Criteria [28], we propose 

below additional factors that should be considered in deciding who should be making 

what decisions.   

 
 Human Tendency for Boredom – This criterion refers mainly to when a human is 

placed strictly in a monitoring role.  If a human does not have an active role in the 

decision making process, this could result in a reduction in the complexity of human 

interaction with the system, to the point of boredom.  This boredom could result in 

tasks not being performed reliably over long periods of time. 

 Trust – It is important that the human operator trust the decisions or solutions that a 

computer generates.  This factor is usually tied into the reliability of the machine or 

computer and the correctness of the associated software making the decisions.  One 

thing to consider is that users are more likely to understand and accept a solution that 

they helped create, as compared to one presented to them with no insight as to how 

the solution was reached (example of under-reliance on the machine).  It is also 

important to be wary of the opposite case in which humans develop too much trust for 

a system and become complacent (over-reliance on the machine).  Complacency can 

be combated by ensuring the human must control a portion of the critical decisions in 

the system.  

 Skill Set Requirement – The skill set required of the human operator can be a 

function of the level of automation at which decisions are made.  This is especially 

true if the system has been in place and it is then decided to change who is making the 

decisions (between the computer and the human).  Some formerly required skills may 

now be obsolete while the need for new skills arises.   
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 Human Team Dynamics – Often decisions are made by teams of humans.  More or 

less automation for certain decisions and actions might cause changes in the team 

structure and composition, redefine team roles, or alter interaction and 

communication patterns.  This is particularly of interest in our research due to the 

outcome of our experiment.  The results suggest that teams of humans interacting 

with a computer might add more benefit than lone human users.  However, if this is to 

be tested in the future, it should be understood that there are certain dynamics within 

a team that could affect the hypothesized benefit.   

 Human Operator Prior Experience – Prior experience of the operator is likely to be a 

factor affecting the successful implementation of automation levels.  If the humans 

have little to no experience, they must be taught from the ground up.  On the other 

hand, if the human operators have significant previous experience and the majority of 

it comes in systems that have mostly been under manual control, they might have 

difficulties adapting to a system in which many decisions are highly automated.  The 

same is true for humans coming from a system in which decisions are highly 

automated to one under full manual control.  It will be harder to re-train these older 

workers who are already set in the ways of how procedures were done in the past.  In 

these cases, it might be better to find humans with little to no prior experience and 

train them accordingly.  This was taken into consideration before running the 

experiments for this thesis.  It was decided that all participants would have no 

experience using a similar system.    

 
 Recovery From System Failure – Automation can be designed to reduce or eliminate 

certain human errors.  However, higher levels of automation may also lead to new 

classes of human errors related to reduced situational awareness.  The user needs to 

understand what is going on throughout the decision process even if the majority of 

the decisions are made by the machine so that in the event of failure of the automation 

support, they will understand how to ensure a safe recovery.  

 
 Decision Interactions – The interdependencies among decisions (how certain 

decisions affect each other) must be analyzed before making a final choice of the 
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levels of automation.  The choice on which level of automation to place a decision is 

not as trivial as analyzing that decision independently.  It is likely that numerous 

decisions throughout a system affect each other at least in an indirect manner.   

 

 Decisions Involving High Risk – The risk associated with a decision outcome can be 

defined as the cost of an error multiplied by the probability of that error.  Decisions 

with little inherent risk (low cost and/or low probability of error) are strong 

candidates for high-levels of automation.  According to Parasuraman, Sheridan, and 

Wickens, “If human operators had to be continually involved in making each of these 

relatively simple decisions, they could be so overloaded as to prevent them from 

carrying out other more important functions” [28].  On the other hand, decisions with 

higher levels of risk, such as those considered in our research and the application in 

this thesis, need to be studied to determine the appropriate level of human 

involvement  

 

 Responsibility – The level of responsibility placed on the operator for the 

consequences of a decision outcome will have a significant impact on the degree to 

which the operator accepts the decisions made by automation.  Thus, it will be 

important to design mechanisms that give the operator insight into the basis for the 

decisions made by automation. 

 

2.8 Proposed Methodology for Determining Level of Human-
Machine Collaboration 

We have combined ideas from previous researchers with our own thoughts in formulating 

a methodology for determining the appropriate levels of human machine collaboration.  

The methodology for allocating decisions that we propose is a “balanced approach” in 

that it first accounts for decisions that need to be placed with either the human or machine 

for political or managerial reasons, and performs a formal analysis on the remaining 

decisions to determine their allocation.  In addition, our methodology overcomes 

limitations of previous approaches in that we have developed a quantitative tool that 

guides the allocation determination.  We refer to this tool as the Human Machine 
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Collaboration Worksheet.  The steps of our proposed methodology are outlined below in 

Table 2-3 and Figure 2-7 and are described in detail in the following subsections.   

 

1. Identify the decisions to be made throughout the system.

2. Identify and Remove decisions that are constrained to be performed 

in a pre-specified manner (e.g. for political, managerial reasons, etc). 

3. Create listing of human-machine capability strengths. 

4. Assign Pairwise Comparison Weights to the Strengths.

5. Use the weights to score each decision as to how well these strengths 

apply for a human performing a certain action/decision and for the 

computer performing the same action/decision.

6. Based on these two weighted scores, pick a level of autonomy from 

Sheridan’s Autonomy Scale.

7. Scrutinize the decisions for the levels of autonomy based on 

“primary” and “secondary” evaluative criteria to be considered.

8. Finalize the level of automation.
 

Table 2-3: Proposed Algorithm for Determining Human-Machine Involvement in 
System Decisions & Actions 

 

2.8.1 Step 1 – Identify Decisions and Actions 
The first step in our methodology is to create an exhaustive list of the decisions that will 

be made in order to have a full understanding of the system.  This list is created from the 

knowledge of what the system is intended to produce.  By understanding the purpose of 

the system, it is possible to work backwards to determine which decisions will need to be 

made in order to reach the desired outcome.     

 

2.8.2 Step 2 – Reduce List to Unconstrained Decisions/Actions 
Step 2 is derived from Meister’s [22] view that there are certain decisions which are 

constrained to be performed a particular way.  These decisions could be constrained for 
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any number of political or managerial reasons.  The constrained decisions are removed 

from the list of decisions created in Step 1, and the formal analysis is conducted on only 

those decisions that have not been removed.      

 

2.8.3 Step 3 - Create Human-Machine Capability Strengths List 
The third step in our methodology is to create a list of human and machine capability 

strengths.  The list provides a good initial understanding of the inherent strengths and 

weaknesses of humans and machines that allows us to exploit the strengths and 

compensate for the weaknesses of both the human and computer in order to generate 

better solutions than either could produce alone.  We have provided such a capabilities 

listing in Section 2.7.1.  However, this listing is not meant to be exhaustive; it highlights 

the capabilities that are relevant to our research in the area of optimization and our 

specific application which is introduced in Chapter 3.  

 

2.8.4 Step 4 - Assign Pairwise Comparison Weights to the Strengths 
Next, instead of allocating decisions based solely on these strengths as Fitts and Price did, 

we obtain an assessment of how these “strengths” compare to each other.  For example, 

the human’s strength of experience may be more important than the strength of creativity.  

Numerical weightings are given to each respective strength based on a pairwise 

comparison with other strengths.  These weightings can be derived using subjective 

(subject matter experts) or objective (cost) measures or any combination of the two.  It is 

important to note that there are not a broad generalized set of weights.  The weights 

depend on the amount and type of subjective and objective measures used.   

One approach to conducting the comparison is through the use of a Paired 

Comparison Chart which is shown in Figure 2-5.  In this approach, each strength is 

compared with each other in a matrix, and given a value of ‘1’ if the strength in the 

column is more important than the strength listed in the corresponding row, ‘0’ if the 

strength in the column is less important, and ‘0.5’ if the strengths are of equal 

importance.  Again, this numerical determination depends on the amount and type of 

subjective and objective measured used.  The column values in the Paired Comparison 

Chart are summed for each strength and the weighting factor for each is then obtained 
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from the normalized summed value for each strength.  This procedure is to be performed 

separately to obtain the respective weights for both human and computer strengths.  

For instance, Figure 2-5 provides an example of a Human Capability Paired 

Comparison Chart.  In this example, the human strength of learning from experience is 

considered to be more important than intuition, recognizing patterns, hedging against 

uncertainty, and creativity.  This is represented by the four values of “1” in the learning 

from experience column.  Recognizing patterns and intuition are considered of equal 

importance, shown in the chart by a value of “0.5” in the corresponding boxes.   

For instance, in the example provided in Figure 2-6, suppose the maximum 

weight score possible is ‘5’ (as is the case in the example provided in Figure 2-6).  

Summing each column gives us a score of ‘4’ for the learning from experience strength.  

In this example, each of the strengths is compared against four unique strengths, therefore 

each summed strength value will be divided by the number four and multiplied by the 

maximum weight value of five.  Thus, the learning from experience strength is calculated 

in the following manner: 

           
strengthsuniqueofnumber

strength
weightstrength i

i∑
= * maximum weight value           (2.1) 

 

learning from experience weight = 55*
4

1111
=

+++  

This process is repeated until a weight has been assigned for each strength.  
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Figure 2-5: Human Capability Paired Comparison Chart.  Used for Determining the 
Weighting Factors on Strengths Used in Human Machine Collaboration Worksheet 

 

2.8.5 Step 5 – Score Strengths based on their Impact on each Decision 
Step 5 introduces a quantitative measure of the contribution of each strength to the 

decisions or actions in the list developed in Step 2.  For example, suppose the strength in 

question is recognizing patterns and that two of the decisions or actions are: 1.) create 

clusters of objects using the geographic layout of the objects and 2.) perform a numerical 

calculation.  It should be obvious that recognizing patterns benefits each of the two 

decisions differently.  In the case of clustering the objects, recognizing patterns is 

relevant and would help in carrying out the action.  However, recognizing patterns does 

not provide much benefit in performing a numerical calculation.  Therefore, the human 

strength of recognizing patterns will receive a large score for the clustering decision and 

a small score for the calculation action.  These scores will range from 0 to 10 (see Figure 
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2-6).  The values assigned to the scores are subjective – it is their relative values that are 

important.   

The decision impact score for each strength is multiplied by the pairwise 

comparison weighting factors determined in Step 4.  The product of these two values is 

the Weighted Decision-Strength Score (WDSS).  Every decision listed in Step 2 will have 

a WDSS for each human and computer strength, and these WDSS’s are then added 

together to provide an overall assessment of the relevance of human and computer 

strengths for each identified decision for the application of interest.  Thus, the result is a 

total score for the human and a total score for the computer for each decision or action to 

be made in the system.     

A useful visual organization of the overall assessment of the relative strengths that 

includes the pairwise weightings, impact scores, and WDDS’s is the Human Machine 

Collaboration Worksheet depicted in Figure 2-6.  The decisions and actions identified in 

Step 2 are listed in rows on the left hand side of the worksheet.  Two sets of columns are 

listed across the top of the sheet; the first corresponding to human operator capability 

strengths and the second to machine strengths derived from the list created in Step 3.  The 

pairwise comparison weights obtained in Step 4 are listed after the name of each strength 

and as the first number in each box of their respective column.  The second number in 

each box is the impact score that reflects the degree to which each strength (listed in 

columns) contributes to the decision or action (listed in rows).  This score was 

determined in Step 5.  The far right of the worksheet contains the total weighted scores 

(WDSS’s) for the human and machine for each decision or action.  Also listed is the 

range of levels of autonomy in which to place that particular decision.   This is discussed 

below in Step 6.  
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Figure 2-6: Example of Human Machine Collaboration Worksheet 
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2.8.6 Step 6 – Choose Level of Autonomy 
Based on the human and machine total weighted scores for each decision or action 

(WDSS’s), we determine a range within Sheridan and Verplank’s Autonomy Scale to 

assign to the decision/action allocation.  This is done subjectively as there is not a set rule 

which links a particular score to an exact level of automation.  However, those decisions 

for which the human WDDS scores are much higher than machine WDDS scores should 

be placed somewhere at the lower levels of automation (“Cluster Enemy Targets” 

decision in Figure 2-6).  These lower levels of automation correspond to decisions being 

carried out solely by humans or mainly by humans with small augmentation or 

collaboration from a machine.  Similarly, decisions whose machine WDDS scores are 

much higher than human WDDS scores should be placed at higher levels of automation 

(“Calculate Value of Plan” decision in Figure 2-6).  Higher levels of automation reflect 

decisions being carried out primarily by the machine with little to no involvement from a 

human.  Those decisions with roughly equivalent human and machine WDDS scores 

should be placed somewhere in the middle of Sheridan and Verplank’s Autonomy Scale.  

Refer to Figure 2-3 for the description of each level of automation.    

 

2.8.7 Step 7 – Scrutinize Level of Autonomy with Evaluative Criteria 
After performing the Step 6 analysis of the Human Machine Collaboration Worksheet, 

we are left with a range of Sheridan and Verplank’s automation levels for which to place 

each decision or action. It is not realistic to strictly assign decisions to a human or a 

computer based solely on the score they receive in the allocation worksheet.  In order to 

narrow this range to a single level of automation, we use Sheridan’s, as well as our own 

Evaluative Criteria, described in Sections 2.5 and 2.7.2, respectively.  Again, the purpose 

of these criteria is to take into account intangible factors that might not be easily 

quantifiable.  Figure 2-6 shows a Human Machine Collaboration Worksheet which 

provides a small example applied to the Mixed-Initiative Control of Autonoma-teams 

(MICA) problem which is used as the application test bed later in the thesis.  Figure 2-7 

recaps the proposed methodology for determining the level of human-machine 

collaboration. 
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Step 1: Identify All Decisions & Actions

Step 2: Reduce List to
Unconstrained Decisions/Actions

Step 3: Create Human-Machine
Capability Strength Lists

Step 4: Assign
Weights to Strengths

Step 5: Score the Strengths
for each Decision

Calculate Weighted Score Sums

Step 6: Determine Range for
Level of Autonomy

Apply Evaluative Criteria

Step 7: Finalize Exact
Level of Automation  

Figure 2-7: Proposed Algorithm for Determining Human-Machine Involvement in           
System Decisions & Actions 
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Chapter 3  
 

Mixed-Initiative Control of Automa-teams 
 

The purpose of this chapter is to present the MICA resource allocation and planning 

system for coordinating actions among unmanned aerial vehicles (UAVs).  We describe 

the motivation for the MICA system and conclude the chapter with an analysis of the 

benefits HMCDM can provide to specific subproblems within the MICA system.  

Optimization problems of the class addressed in the MICA program are NP-

complete [2] [9].  Extremely long execution times are required in order to solve such 

problems to optimality.  This is unacceptable for problems wherein timely solutions are 

required to accommodate changes in the environment.  An approach that has proved to be 

effective in problems of this class is referred to as composite variable formulations [5].  It 

addresses the intractability issues by combining many of the decision variables in the 

original problem into composite variables which each represent a collection of these 

variables.  In MICA, the decision variables for the original problem are:  for every time 

interval, where should each Unmanned Aerial Vehicle (UAV) be and what activity 

should it be performing [2].  The composite variable formulation for MICA encompasses 

all decisions required for the complete mission for a team of UAVs.  These composites, 

which can be viewed as “plan fragments” of the overall MICA plan for all vehicles and 

all teams, are also referred to as “options.” 

The advantage of the composite variable formulation is that it can be easier to 

solve than the original problem.  There are however two main challenges to using such an 

approach: defining the right mapping from the original variables to composite variables 

and selecting which composite variables to generate [1].  In the case of MICA, there are 

an exponential number of possible missions for each possible team of vehicles when 
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considering every possible set of targets.  The clustering and resource allocation approach 

described throughout the chapter has been developed to select a good set of team options 

to consider in the final solution.  

  

3.1 Problem Being Solved in MICA 
MICA is initialized with a list of assets (Blue entities), resources associated with those 

assets (weapons and sensors), enemy threats and targets (Red entities), and Commander’s 

Intent (described below).  Based on this information, the goal is to select, sequence, and 

schedule sensing and strike activities for the available aircraft resources to prosecute 

enemy targets in an effort to maximize the total expected Value minus Cost (described 

below).  The solution developed for the MICA problem is a closed-loop, dynamic 

planning and execution system for selecting courses of action (COA) for UAV mission 

planning.     

• Value is computed as a function of commander’s intent.  Commander’s Intent is 

described as a function of three intent matrices; the Awareness Intent Matrix 

(AIM), the Kill Intent Matrix (KIM), and the Damage Intent Matrix (DIM) [2].  

Each of these is discussed further in Section 3.2.1.1.   

• Cost is computed as a function of aircraft loss, aircraft detection, and cost of 

resources used.   

• Both Value and Cost are expected values with respect to the battlespace state, 

sensor performance, weapon performance, and enemy (Red) air defense system 

performance [2].  

More formally, the COAs for MICA are determined by solving a large-scale binary 

program.  The binary decision variables are composite variables that represent a 

combination of which aircraft are responsible for what enemy targets in each time period.  

Using these composite variables, the problem is formulated as the following integer 

program [1]: 
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where x is a n-dimensional binary decision and xj is equal to 1 if the jth option is selected, 

and 0 otherwise.  We consider xj a composite variable since xj = 1 means that option j and 

all the decisions that compose option j have been selected.  An example of an option 

would be two aircraft of commodity type #1 performing actions (strike and/or sense) on 

targets within cluster #4 (which could include multiple enemy targets) flying a specific 

flight pattern in time period #2.  More detail on the building of options is presented 

throughout this chapter.  The variable vj represents the (value - cost) of option j, and 

factors in the value of the targets in the plan, the risk of attrition, and fuel usage.  The 

constraints Ax = b can be broken into aircraft constraints (one for each aircraft 

commodity type in each time period) and target constraints (one for each target).  These 

constraints ensure that plans are not created with more aircraft flying missions than are 

available in each time period and that each enemy target is assigned to exactly one 

cluster.  More explicitly, A is composed of n options where each column Aj of A 

represents an option. Figure 3-1 provides a further break down of Aj.  Each parameter in 

the figure takes on the value 0 or 1.  If the value equals 1, then the designated action is 

carried out.  For example if the parameter a11 = 1, then aircraft commodity 1 is used in 

period 1.  In addition, A is the total number of aircraft commodities, T is the number of 

time periods, H is the total number of possible targets to hit, I is the total number of 

possible targets to optically image (sense), and G is the total number of “grid cells.”  The 

combination of areas to search (grid cells) and enemy targets are known as Points of 

Interest (POIs).  In order to solve this problem, the large-scale optimization problem is 

broken down into smaller, more tractable subproblems.  The coordinating and solving of 

these subproblems creates COAs as described in the following sections.  
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Figure 3-1: MICA problem 

 

3.2 The MICA Three-Tiered Planning Hierarchy 
The MICA system is decomposed into a three-tiered planning hierarchy (Figure 3-2 [2] 

and Figure 3-3 [2]).  This hierarchical structure breaks down the large-scale optimization 

problem into smaller, more easily solvable subproblems in an effort to balance optimality 

and tractability.  Each of the three tiers or levels is responsible for a separate subproblem 

or aspect of the overall larger planning optimization problem.  Starting at the top, the 

Team Composition and Task Allocation (TCTA) level is given all available information 

about the problem.  This includes commander’s intent, information about all of the 

available friendly (Blue) resources, and information about the enemy targets.  Given this 

information, TCTA groups enemy targets into clusters and assigns teams of aircraft 

resources to these clusters.  We refer to these aircraft resource – cluster pairs as“options.”  

These resource–cluster pairs are sent to the next level of the planning hierarchy which is 

termed Team Dynamics and Tactics (TDT).  The TDT level determines the sequencing of 
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the enemy targets contained within each separate cluster.  This level also establishes the 

best set of sensing, strike and self-protection activities to be performed in prosecuting 

each target in order to maximize the value achieved while minimizing cost.  The lowest 

level of the planning hierarchy is called Cooperative Team and Path Planning (CTPP).  

This level adds further details to the plans developed for each option at the TDT level, 

including sensor pointing, weapon selection, weapon release time and location, 

cooperative team self-protection jamming and the exact routes of each vehicle in the 

team.  The set of options and their associated values and costs are sent back to the TCTA 

level, where the best collective set of options is chosen subject to the constraints that no 

aircraft can simultaneously be a member of two teams and that no target be addressed by 

more than one team.  More detail of each of the three levels will be given in subsections 

3.2.2, 3.2.3, and 3.2.4 respectively. 

 

Figure 3-2: MICA Three-Tiered Planning Hierarchy                                              
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3.2.1 Initial Information 
In order to start the planning process, the three-tiered hierarchy requires initial 

information defining the problem statement and the state of the battlespace.  This initial 

information includes commander’s intent, the current status of friendly resources, and the 

current status and future estimation of enemy targets. 

3.2.1.1 Commander’s Intent 
Commander’s intent is the term associated with what the commander wants to 

accomplish or prevent from happening in the given scenario.  The commander’s intent is 

characterized through a specification of importance of targets by time, by region, by type 

and with a specified level of allowable risk (cost).   

 
• Time - Time represents both time phase importance as well as target time 

criticality (i.e. it is imperative to hit a certain target before carrying out other 

particular missions).  

• Region – The commander can distinguish the importance of targets by where 

in the battlespace the targets reside.  For example, targets in the northwest 

region might be more valuable than targets in the rest of the battlespace.   

• Type – The commander can specify that certain target types are more valuable 

than other target types.  For example, they might wish to assign more value to 

a surface-to-air missile site (SAM) than to a truck. 

• Allowable Risk – The commander’s intent is used to relay information 

regarding the importance of achieving objectives versus the loss of resources, 

including human. 

  
In order for commander’s intent to be employed in the MICA system, it must be mapped 

into quantitative values.  The approach taken in MICA consists of representing the 

information in the following three matrices:  

• Awareness Intent Matrix (AIM):  This matrix includes the value of gaining 

awareness of enemy POIs in order to support activities other than strike (e.g., 

routing of aircraft around threats, tracking ground force movement) [2]. 
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• Damage Intent Matrix (DIM):  This matrix captures the specific value of damage 

assessment on a target beyond just determining whether additional value can be 

obtained by striking it again.  For example, doctrine may impose specific Battle 

Damage Assessment (BDA) requirements on certain targets [2]. 

• Kill Intent Matrix (KIM):  This matrix contains the value achieved for destroying 

an enemy target.  Sensor looks that improve the effectiveness of strike activities 

accrue marginal KIM value [2]. 

In addition to valuing situation awareness and target destruction, the system also 

considers costs and constraints when creating plans.  Some of the major components of 

costs and constraints are. 

• Aircraft Value Matrix (AVM):  Cost of losing an aircraft by type [2]. 

• Time-Sensitive Targets:  To emphasize both the increased value and time 

criticality of time-sensitive targets, the commander can define an additional time-

varying multiplicative factor for the value of specific Red entities.   

3.2.1.2 Initial Resource Information 
The resources available to the MICA system are UAVs.  There are five primary types of 

UAVs: large sensor, small sensor, large weapon, small weapon, and small combo.  Each 

aircraft platform type has different possible configurations of sensors and weapons.  For 

example, “weapon” aircraft can only carry weapons, “sensor” aircraft can only carry 

sensors, and “combo” aircraft can carry both weapons and sensors.  The adjectives small 

and large refer to how many weapons or sensors the aircraft can carry.  For example, a 

large weapon aircraft can carry twenty weapons while a small weapon aircraft can only 

carry eight.   

Information about these aircraft include their current locations, the amount of fuel 

the plane is carrying, the types of countermeasures that are affixed, the potential 

configuration (i.e., which weapons, sensors, etc could possibly be installed), the number 

of each aircraft type available, and an importance level reflected through the cost 

associated with each (how much is the plane worth to the user).   
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3.2.1.3 Intelligence Preparation of the Battlefield 
Intelligence preparation of the battlefield (IPB) includes estimates about the enemy’s 

location and identification (ID).  These are estimates because the locations and ID’s are 

not known with certainty.  Each enemy resource is given a probability of being a certain 

type, and locations are characterized using a normal distribution. The damage state of 

each enemy resource is also uncertain with each categorized into one of three discrete 

states of damage: destroyed, damaged, undamaged.     

 

3.2.2 TCTA – Team Composition and Task Allocation 
The problem definition contained in the initial information described above is sent to the 

highest level of the planning hierarchy: Team Composition and Task Allocation (TCTA).  

The TCTA level has three main goals/objectives.  The first is to partition the enemy 

targets and aircraft resources into team-sized sets.  An algorithm first creates clusters of 

enemy targets or expected target locations.  Once the enemy targets are clustered, 

appropriate teams of aircraft resources are assigned to address each of the clusters.  This 

assignment process is based on how well the aircraft capabilities (i.e., sensors and 

weapons) match the needs to prosecute the targets in the cluster.  More is discussed on 

the aircraft assignment process in Section 3.3.2.  The goal is to maximize the value minus 

cost.  Value is generated by destroying targets, eliminating threats, or investigating areas 

of interest as specified by the three intent matrices discussed in Section 3.2.1.1.  Cost is 

computed as a function of Blue loss, Blue detection, and cost of resources.  Both the 

values and the costs are initially entered into the system through the Commander’s Intent.   

The activities of the teams of aircraft in each resource-cluster option represent a 

composite variable.  Composite variable modeling [5] is an approach to addressing the 

complexity of solving large-scale optimization problems.  In composite variable 

modeling, a single decision variable is composed of a set of “traditional" or atomic 

decision variables, aggregated in a manner that improves the tractability of problems.  

For example, rather than have a variable for every possible combination of aircraft 

assignments to targets, variables at the TCTA level represent assignments of teams of 

aircraft to clusters of targets.  However, there are a combinatorially large number of 

possible composites – that is, if there are T targets and A aircraft, then the total possible 
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number of options is the cross product of all combinations of T targets and all 

combinations of A aircraft.  Let nCk equal the number of combinations of n things taken 

k at a time.  Thus, the total number of possible groupings of a aircraft is aCk
k=1

a

∑ .  

Similarly, the total number of possible groupings of t targets is tCk
k=1

t

∑ .  The total number 

of possible resource-cluster pairs is the product of these two ( aCk
k=1

a

∑  * tCk
k=1

t

∑ ).  

Therefore, for a scenario including 15 aircraft and 100 targets, there are 1.27E30 

combinations of targets and 32,767 combinations of aircraft.  This results in a total 

number of 4.15E34 possible resource-cluster pairs!  Our objective is to choose a small 

number of options and hope that among the small number are ones that will combine to 

form a near-optimal plan.  However, if these composites are chosen poorly, the resulting 

detailed solution created by the lower levels will be suboptimal.  Composite variables are 

discussed in Chapter 4.   

In addition to assigning aircraft teams to particular clusters, each team is also 

assigned regions of interest which, based on IPB, are expected to contain additional 

targets.  These regions of interest and the enemy targets are collectively known as Points 

of Interest (POI).  The resource-cluster options are passed to the lower levels of the 

hierarchy where a detailed plan is created for each option.  At the conclusion of the 

algorithm planning process, these detailed plans are sent back up to the TCTA level for 

option selection.  More detail on how option selection is accomplished in given in 

Section 3.3.5.  TCTA selects and schedules among the various team options in order to 

maximize Value – Cost. 

 

3.2.3 TDT – Team Dynamics and Tactics 
The next level in the MICA planning hierarchy is Team Dynamics and Tactics (TDT).  

As described in Section 3.2.2, the output from the TCTA level is a collection of options 

which consist of aircraft resources and enemy target clusters.  These options are the 

initial input for the TDT level.  The Team Dynamics and Tactics level adds additional 

plan detail to these options in three ways.  First, TDT determines the optimal action to be 
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taken for each POI within its assigned cluster.  The choice of actions is constrained by the 

capabilities (sensing, weapons, jamming) of the aircraft paired with that cluster.  The 

possible courses of action for each POI include any combination of looking (sensing) and 

striking (attacking).  After the course of action is decided for each POI, the next step is to 

select the exact equipment (sensor, weapon, etc) to use to complete the desired action.  

Finally, the TDT level calculates the optimal sequencing of the POIs contained within 

each cluster.  The choice of POI sequencing can make the difference between 

successfully destroying all targets in a cluster and having Blue resources destroyed 

because they were subjected to a large amount of risk.  This sequencing is constrained by 

an analysis of coverage and precedence (CaP) constraints.  CaP constraints are necessary 

for problems with targets that have overlapping threat Engagement Zones (EZ).  This 

overlap can provide protection (“cover”) by Red air defense (SAMs) for nearby Red 

entities in complex ways.  In order to be able to prosecute a protected target safely, the 

threats that protect or cover that target must first be engaged and suppressed.  The CaP 

constraints ensure that each sequence decision meets the criteria of not requiring entry 

into dangerous airspace (without the ability to either destroy or jam the associated 

target’s protecting radar).  For example, if the most important (i.e., highest valued) target 

is surrounded by a ring of lower valued enemy SAMs, precedence constraints might 

require destroying the surrounding lower valued SAMs before attacking the interior high 

valued target.  Thus, the POI sequencing performed by the TDT planning level can be 

viewed as a traveling salesman problem constrained by the CaP constraints.  Further 

information on coverage is given in Figure 3-4.  TDT passes an ordered set of enemy 

targets, actions, and aircraft resources to the CTPP level for further planning refinement.   

 

3.2.4 CTPP – Cooperative Task/Path Planning 
The final level in the three-tiered hierarchy is the Cooperative Task/Path Planning 

(CTPP) level.  This level adds additional detail to the plans generated by TDT for each 

option.  CTPP determines the exact route for each aircraft in the team by minimizing 

route costs.  The route costs are calculated as a combination of time, fuel, and the 

probability of attrition.  In addition, this last level of the planning fills in the details 

required to accomplish the TDT plan.  These details include sensor pointing, weapon 
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release time and location, timing and pointing of jammers for Integrated Air Defense 

System (IADS) suppression, and determining decoy trajectories and time of launch.  

Finally, CTPP provides a detailed evaluation of the cost and value for each option that is 

used by the TCTA level in option selection.    

Figure 3-3 gives a process flow that summarizes how the large-scale MICA 

optimization problem is broken into smaller more manageable subproblems as described 

above.  The principal inputs to the process are: 

1.) Commander’s intent. 
2.) Current best estimate of battlespace state (i.e. information on enemy targets). 
3.) Available aircraft resources.  
 

 
Figure 3-3: Decomposition of MICA Problem 

 

3.3 Incorporating a Human into the System 
Within the three-tiered decomposition of the planning hierarchy, there are several 

subproblems to be solved.  Due to the complex nature of these subproblems, not all these 
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problems can be solved efficiently by a computer.  The goal of this research is to 

combine the inherent strengths of both a human and the computer in order to generate 

“better” solutions than either could produce alone.  We define “better” as meaning either 

solutions that contain more value (closer to optimal) or solutions that are created faster 

but may contain the same value.  With this goal in mind, we performed an analysis to 

determine which decisions or subproblems in MICA would benefit from Human-Machine 

Collaborative Decision Making (HMCDM).  In addition, we attempted to establish the 

appropriate degree of human-machine collaboration for each of these subproblems.   

We examined five of the major subproblems in MICA and identified several 

opportunities among them for effective HMCDM.  The following subsections provide our 

analysis for involving a human in each of the five subproblems.  However, it is important 

to note that only two of these subproblems were explored in further detail for this thesis: 

decomposing enemy targets into clusters and selection of the optimal option set.  We 

identified these two as having the most to potentially gain by inserting a human into the 

problem solving process.  These two subproblems are the focus of the HMCDM 

experiments which will be presented in Chapters 5 and 6. 

As described throughout the chapter, the MICA problem is a composite variable 

formulation and the steps outlined above describe the process of generating and 

evaluating the composite variables (which have been referred to throughout this Chapter 

as resource-cluster options).  It is also important to reiterate that the objective of the 

composite generation process is not to generate all possible options/composite variables, 

rather it is to generate a small set with the hope that the optimal composites (or near-

optimal) will be in that set.  Thus, the steps above have been designed with that in mind.  

Our research focuses on introducing a human into the process in an attempt to improve 

the quality of the options by employing the inherent human capabilities outlined in 

Chapter 2 in the various steps of the option generation and selection process.   

      

3.3.1 Decomposing Enemy Targets into Clusters 
When either the initial plan or a complete replan is created, the first subproblem solved in 

the planning hierarchy (at the TCTA level) is the decomposition of enemy POIs into 

clusters.  This is a critical step in that it affects each of the subsequent decisions and 
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subproblems that follow.  Because each lower level decision in the MICA planning 

hierarchy successively builds on the results of decisions made at higher levels, a poor 

choice for these initial clusters can severely degrade the quality of the final plan created.  

In particular, a poor choice of initial clusters could result in missions that are too risky, 

take too long, or achieve little value.  The original design of the clustering process in 

MICA was a computer-only solution with no human involvement.  The clustering 

decision was based on a set of heuristics that incorporated three main criteria: linear 

distance, coverage and precedence (CaP), and interaction.  Figure 3-4 provides more 

detail on the three criteria.    

In addition to the three criteria, the heuristics also check to determine what class 

of Red entity each target in the cluster is likely to be (each target has a probability of 

being a certain target type due to uncertainty).  Of particular interest is whether or not the 

POI has the potential to be a threat with the ability to shoot at the aircraft. Based on all of 

this information, the MICA system uses a heuristic to cluster enemy targets. 

Distance – The Euclidean distance between the centers of the points of interest (POIs) or targets.  This distance is 
calculated using the generic distance equation

Coverage – Overlapping threat Engagement Zones (EZ) can provide protection (“cover”) for nearby Red entities.  
Therefore, each target within the problem is given a corresponding coverage number. Targets that are not 
covered at all are given a value of 0.  In the first graphic below, the “dashed circle” corresponds to the target 
with a coverage number of 0.  The “solid circle” target is inside, thereby not covering the “dashed circle” 
target.  In the second graphic, the target identified by the arrow is partially covered by both the “dashed 
circle” target and the “solid circle” target giving it a coverage number of 1.  In the final graphic, the “dashed 
circle” target is completely covered by the “solid circle” target.  This represents a coverage number of 2. 

Coverage number  = 0 =1 =2

Interaction – Defines how closely targets are “related” to one another. Targets that are part of a “chain” receive an 
interaction number relative to how many degrees of separation exist between the two targets in question.  
Those not in a chain get an interaction number of a large positive constant.

A is related to A with Interaction = 0
A is related to B with Interaction = 1
A is related to C with Interaction = 2
A is related to D with Interaction = M (where M is a large positive number)

x x x

A B DC

 
Figure 3-4: Numerical Values Used in Computer Clustering Heuristic 
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One shortcoming of the clustering approach is that if targets are “blocked” by 

other targets in less obvious ways, some targets can be left out of clusters entirely.  This 

often leads to high-valued targets that are not included in the final plan generated by the 

MICA system.  Figure 3-5 provides an example of this phenomenon.  In the figure, 

although there is no explicit coverage by any of the threats on “the wall”, target 1 is still 

being blocked by these targets.  In addition, the distance between target 1 and any of the 

threats is great and the interaction numbers are all large positive numbers.  All of these 

factors result in the heuristic not creating any clusters including target 1.   

  

 

Figure 3-5: Wall of threats blocking a high value target (i.e., target 1) 
 

One solution to this problem is to design a better clustering algorithm.  However, 

involving a human in the clustering process might provide a more effective way to create 

better solutions.  Human operators can quickly perceive the big picture and can take 

advantage of their ability to recognize patterns (See Figure 3-6) and can use spatial 

reasoning to create clusters.  Spatial structure helps to reduce complexity for humans but 

might not for computers or algorithms.  Humans are good at identifying patterns with 

spatial structure such as in Figure 3-7.  Although there are many heuristic clustering 

algorithms that deal with this kind of problem, the complex nature of the interactions 

among threats and targets in MICA make the development of a general heuristic 

problematic.  A human can dynamically exploit different aspects of the problem 

depending on the scenario while the computer is limited by its own algorithm.  For 

target 1

Friendly resources

Wall of threats 



 67

example, instead of creating an exhaustive list of logic to account for every possible 

scenario intricacy, we can tap into the human resource to quickly identify strategies to 

overcome problem-specific aspects.  Of course, there may be cases for which an operator 

would have difficulty in identifying a clustering pattern, especially for scenarios that have 

uniformly distributed targets such as Figure 3-8.  

It is also possible that humans would have trouble clustering targets in scenarios 

that contain an enormous number of enemy targets.  The overwhelming number of targets 

might be too much for a human to process especially if they cannot easily distinguish 

CaP constraints from the graphical display.  In these situations, a computer’s ability to 

handle larger problems and to recognize more complicated CaP constraints is useful.  

Therefore, it is our conclusion that target clustering should be a joint effort between a 

human and a computer algorithm.  Even situations in which a human operator is only able 

to easily define a few clusters, this will narrow the large search space for the computer to 

cluster the remaining targets. 
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Figure 3-6: Generic Example of Exploiting Human’s Ability to Visually Cluster [17] 
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Figure 3-7: Generic Example of “Easy” Scenario for Human to Cluster 

 
 

 
 

Figure 3-8: Generic Example of “Difficult” Scenario for Human to Cluster 
 

3.3.2 Formation of Aircraft Teams 
After POIs are clustered, the TCTA level assigns a team comprised of appropriate types 

of aircraft for each cluster.  This assignment process is another MICA subproblem that 

may benefit from HMCDM.  MICA currently uses heuristics to create three different 

aircraft teams for each cluster.  The heuristics use scores based on the requirements for 

prosecuting the POIs within the cluster and the capabilities of the aircraft in forming the 
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teams for a given cluster.  The rationale behind the selection of the three team types for 

each cluster follows. 

• Varsity Pairing: Assigns the best possible aircraft to be paired with each 

cluster.  Starts by identifying a particular cluster and a general idea of 

what actions to take for the POIs in that cluster.  For this pairing 

procedure, it is assumed that all aircraft are available to be chosen.  The 

procedure starts by adding aircraft that provide the most value given the 

associated cluster and continues until there is a group of aircraft that can 

accomplish what needs to be done to the entire cluster.  This process is 

followed for all remaining clusters until an optimal group of aircraft has 

been created for each cluster.  Clearly this pairing procedure does not take 

into account the constraints on available aircraft.  For example, this 

pairing procedure might identify eight clusters that would benefit most 

from having a large weapon aircraft and assign one to each cluster but 

there might only be three large weapon aircraft available for the scenario.   

 

• Junior Varsity Pairing: This pairing procedure accounts for the number of 

each aircraft commodity used in the Varsity Pairing, making it less likely 

that an aircraft that was in high demand in the Varsity Pairing would be 

used in a Junior Varsity Pairing.  For example, this pairing procedure 

might not assign a small combo aircraft to a cluster if it knows that small 

combo aircraft have been assigned to numerous other clusters (including 

those pairings created in the Varsity technique).  At the end of this pairing 

procedure, there are options created from the Junior Varsity Pairing 

procedure and the Varsity Pairing procedure. 

 

• Mutually Exclusive Pairing: The third and final pairing procedure is the 

mutually exclusive pairing procedure.  This procedure rank-orders the 

clusters based on their potential value so that the most valuable cluster is 

assigned aircraft that best meet the objectives of the actions planned for 

the targets within that cluster.  This process continues for the second 
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highest valued cluster and so on until all clusters have been assigned 

aircraft.  This procedure differs from the other two in that it only assigns 

available aircraft.  For example, if there are only five small weapon 

aircraft available and all five have previously been assigned to clusters, the 

algorithm accounts for the fact that no small weapon aircraft are available 

and moves on to the next best aircraft type.  “Best” is defined as the 

aircraft type whose capabilities match best to the actions to be carried out 

for the targets within the cluster.    

 

Note that the number of possible combinations of aircraft assignments to clusters is 

extremely large and may require considerable computation in order to optimally match 

teams to each cluster.  By involving human collaboration in this subproblem, the time to 

select good (or near-optimal) teams of aircraft might be significantly decreased.  Based 

on a combination of experience, tactics and doctrine, a human might be able to 

immediately eliminate “bad” choices of aircraft teams.  A bad choice would be a 

particular composition of aircraft that would not be effective or reasonable for a certain 

cluster of POIs.  Reasons for not using particular aircraft range from certain terrain 
limitations that are not currently modeled in MICA to a commander’s reasons for not 

wanting to use a certain aircraft or configuration.   

In order for a MICA user to make good team composition decisions, the user 

might have to be trained.  This task is not as simple as visually clustering items based on 

their spatial similarities.  It requires extensive experience and knowledge of the different 

aircraft types and their capabilities.  By combining the computer’s ability to find 

available aircraft with the desired capabilities quickly and keep track of many different 

options with operator experience in pruning the range of choices, human-machine 

collaboration has the potential to add benefit in solving this sub-problem.  It is important 

to note that the possible benefits of HMCDM in this subproblem extend beyond the value 

of the solution alone.  For example, by involving a user in the assignment of aircraft, the 

user’s confidence in the solution generated could significantly increase.  
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3.3.3 Sequencing of Enemy Targets within the Clusters 
Another subproblem in the MICA hierarchy that could benefit from HMCDM is the 

sequencing of targets within clusters.  The target sequencing problem in MICA is stated 

as a multi-vehicle traveling salesman problem that uses estimates of cost between pairs of 

targets in order to find the best sequencing solution.  Although the number of targets in 

each cluster is typically small (less than 10), the number of different sequences can be 

very large.  For example, a cluster consisting of 10 targets with no precedence constraints 

has 3,628,800 different ways of being sequenced.  A human would certainly not excel at 

enumerating or evaluating all of these sequences.  However, there might be a certain 

sequencing that is readily identifiable by a human based on their experience, intuition or 

current tactical doctrine.  They might also be able to reduce the number of sequences for 

the machine to evaluate by quickly identifying undesirable full or partial sequences. 
 

3.3.4 Individual Aircraft Routing 
After the targets have been clustered, teams of aircraft assigned, actions on targets 

decided, and the sequencing of actions determined, the next subproblem to be solved 

deals with the detailed routing of the individual aircraft between POIs and the actions at a 

POI.  The current method uses an A* search [1] over a regular grid of the battlespace to 

calculate the shortest (least costly in terms of an objective function that trades off time 

and risk) paths between POIs.  The results depend upon the size of the grid used: the 

smaller the grid size, the longer the computation will take, but safer / shorter routes are 

more likely to be found.   

The computer excels at this sort of well-defined search, and can keep track of the 

fuel usage, time usage, and accumulated probability of attrition for any path generated.  

Because of the large number of possible routes and the amount of information to be kept 

for each route, a human would have a difficult time solving this problem without some 

computational support from the machine.  However, there are several advantages to 

involving a human in this task: a user could take into account features of the terrain, 

specify particular waypoints, specify weapon release points, or even see paths which the 

computer perceives as blocked, due to the aforementioned shortcoming of searching over 

a regular grid.  By doing so, the human could quickly decide portions of routing, thereby 
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decreasing the amount of required computer calculation.  Although this subproblem 

showed potential for HMCDM involvement, it was not explored in detail for this thesis. 

The expected benefit was not anticipated to be significant relative to the effort required to 

enable human interaction. 

 

3.3.5 Selection of the Optimal Option Set 
After the TDT and CTPP levels add plan details to each of the resource-cluster options 

originally created in the TCTA level, the full options along with their cost and value are 

sent back to TCTA for option selection.  The option selection problem is an integer 

programming problem [2] that is currently solved by a heuristic.  The original MICA 

design envisioned a “pool of tens of thousands of options" [1].  However, due to the 

computational complexity of the option generation process as described above, the 

number of options created is typically in the tens.  The fact that there are a small number 

of options is key in assuming that human involvement might add significant benefit in 

option selection. The process might entail the computer calculating and displaying 

metrics for each of the options and the human evaluating these metrics in selecting which 

options should be contained in the final solution.   

The subjective nature of the solution quality makes it difficult for a computer to 

quantify if one option is “better” than another and if it is, to what degree is it better.  By 

involving a human in the process, they are able to make the risk-reward trade-off and 

dynamically determine which metrics are most important.  For example, in some 

situations, the time to conduct the mission might be the most important factor whereas in 

other situations the number of resources used might be the most important.  The human 

could tap into their experience, intuition, and understanding of the big picture to conduct 

the trade-offs instead of being forced to quantify time or relate numerically how 

important resource usage is compared to the value of the solution.   

Even if the MICA system were modified to actually produce pools of thousands 

of options, humans could still add benefit to the option selection process.  However, the 

way in which humans were involved would have to change in order to stay effective.  It 

would no longer be a possibility to present a human with information about thousands of 

different options at once.  This amount of information would overload the human and 
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most likely not result in optimal solutions.  However, instead of attempting to evaluate all 

the options at once, the humans would be given smaller sub sections of options at a time.  

Of these smaller sub sections, humans could identify options they definitely wanted 

placed in the final solution, or options to be “held onto” and carried over into the next 

iteration for further evaluation.   

Human involvement could also add benefit even if an Integer Program solver 

were employed in the MICA problem.  An IP solver would pick the best set of options 

subject to the constraints that no aircraft is used in two different options and no POI is 

addressed in two different options (i.e., no aircraft and no POIs are “double-booked”).  In 

this situation, we expect that a human operator would be well used in an iterative process.  

After the IP solver found the best solution among the options generated, the operator 

could inspect that solution and identify how unused aircraft and unused targets might be 

used in creating new options or in modifying existing options.  This would ensure that as 

many aircraft as possible are used and as many POIs as possible are addressed.  This idea 

of an Iterative Composite Variable Approach is discussed further in Chapter 4.   

In addition, there is a great amount of benefit in having the human feel involved 

and understand the solutions that are being created.  Because this is the last step in the 

plan creation process, human involvement in this step is crucial for establishing trust in 

the final solution.    
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Chapter 4  
 

Large Scale Optimization -- Goal Decomposition  
& Composite Variable Formulation 

 
The development of algorithms to solve complex, large-scale, optimization problems, 

poses a number of significant challenges.  Here we consider the class of problems whose 

decision variables represent activities over time that are traditionally formulated as 

Integer Programming (IP) problems.  Because of the large scale of these optimization 

problems, the IP formulation requires an enormous number of variables in order to 

represent all possible decision alternatives.  For instance, the problem of optimizing the 

scheduling and routing of 20 aircraft across a network of 100 locations over a time 

interval of one day discretized into one-minute periods requires 2.88 million integer 

variables [1].  In addition to the large number of decision variables, there are also a 

combinatorial number of constraints required for this problem.  These constraints ensure 

that aircraft are not scheduled to fly faster than they are physically capable and that they 

are not in two places at the same time.  Adding to the complexity of the solution to these 

problems is the fact that these constraints induce considerable fractionality in the linear 

programming relaxation solutions.  This fractionality results in solution times that are 

typically exponential in the number of integer variables.  In summary, the massive 

number of variables and constraints coupled with the fractionality makes it nearly 

impossible to solve such problems using traditional IP approaches.    

Two techniques which have been found to be useful in overcoming the difficulties 

associated with such complex, large-scale, optimization problems (such as the MICA C2 

problem presented in Chapter 3) are composite variable formulations and goal 

decomposition.  This chapter describes, compares and contrasts these two formulation 

and solution methododologies.  We discuss their respective strengths and weaknesses in 
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the context of addressing complex large-scale optimization problems.  Finally, we outline 

a proposed strategy for incorporating both methods in an HMCDM context.  We call this 

strategy the Iterative Composite Variable Approach.  We end the chapter by describing 

how this approach can be used in the MICA application to generate “better” solutions.  A 

“primitive” version of the Composite Variable-HMCDM approach, in which only one 

iteration was employed, was used to obtain the results presented later in this thesis.  

  

4.1 Linear and Integer Programming 
We begin our discussion of composite variable formulations with a brief overview of the 

application of traditional Linear Programming (LP) and Integer Programming (IP) 

approaches to scheduling and resource allocation problems.   

Mathematical models are used to describe linear programming problems.  All 

mathematical functions in an LP are required to be linear functions of the decision 

variables.  The word programming is essentially a synonym for planning.  Thus, linear 

programming can be viewed in the context of the problems of interest to us as the 

planning of activities to obtain an optimal result among all feasible alternatives [16].  

Linear programming can be used to allocate limited resources optimally among 

competing activities.  The problem involves selecting the levels of activities that compete 

for scarce resources.  The choice of activity levels dictates how much of each resource 

will be consumed by each activity.  Linear programming can be applied to a variety of 

different situations.  However, in each of these situations, the common ingredient is the 

necessity for allocating resources to activities by choosing the levels of those activities.  

Although allocating resources to activities is the most common application of 

linear programming, it has numerous other important applications as well.  In fact, any 

problem whose mathematical model fits the very general format for the linear 

programming model is a linear programming problem [16].  

In many practical problems, the decision variables of the problem are limited to 

taking on integer values.  For example, if the problem is to decide how many stores to 

build in locations around the U.S., a solution that calls for 0.6 stores in one location and 

0.7 in another location would not make sense because it is not possible to build fractions 

of a store.  In such cases, an integer program is used instead of a linear program.  The IP 
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mathematical model is the LP model with the additional constraint that all decision 

variables take on integer values.     

The computational effort required to solve integer programs depends a great deal 

on the problem structure.  IP solvers generally solve a sequence of linear programs in a 

branch-and-bound tree search that terminates upon finding an integral solution [24].  The 

more naturally integral the underlying linear program is, the less amount of work required 

of the generally exponential-performance branch and bound algorithm.  Therefore, 

problems whose linear relaxations naturally produce integral or nearly integral solutions 

solve rapidly in IP solvers.  However, in most real life applications, solutions are not 

naturally integral resulting in a significant amount of computation time and effort needed 

to solve the problem.  

 

4.2 Composite Variable Approach to Solving Large-Scale 
Optimization Problems 

Composite variable modeling is a recently developed approach to solving large-scale 

optimization problems that attempts to reduce the fractionality which is often present in 

real life problems.  The concept was developed in [5] and has been further applied in 

several applications, including [8], [13] and [23].  In composite variable modeling, a 

single decision variable is composed of several “traditional" decision variables.  A typical 

example of a composite variable is a binary decision variable that represents whether or 

not to implement an entire set of decisions.  The advantage to using this approach for 

large-scale problems is that it can lead to less fractionalization in the solution which leads 

to a strong linear programming relaxation.  In other words, the solutions to the linear 

programming relaxation of the composite variable problem tend to be more nearly 

integral, resulting in solutions of the integer program with fewer iterations of the branch-

and-bound technique.  Problems formulated using composites also have significantly 

fewer constraints because many of the constraints of the original problem become 

captured in the composite variable formulation.  However, due to the numerous ways of 

combining traditional variables to form composites, composite formulations generally 

lead to an increased number of integer variables.  An example showing this effect in the 

MICA problem is given in Chapter 3 (Section 3.2.2) and is summarized here.  If there are 
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T targets and A aircraft, then the total possible number of options is the cross product of 

all combinations of T targets and all combinations of A aircraft.   For a problem with 15 

aircraft and 100 targets, there are 4.15E34 possible composite variable combinations.  The 

original problem would also have all of those combinations to deal with as well as the 

details of the missions (e.g., the trajectories of the aircraft, etc).  Thus, although the 

composite formulation is complex – the original problem is even more so. 

The large number of variables is typically overcome by applying application-

specific rules/heuristics to reduce the number of composites that are considered.  For 

instance, in the 15 aircraft, 100 target example given above, it is likely that not all of the 

aircraft would be able to effectively prosecute all of the targets.  This may be because 

some of the aircraft are not equipped with the appropriate weapons or sensors.  In 

general, composites that “do not make sense” or are dominated (see Section 4.2.1.2 for 

further discussion on dominated composites) by other composites are discarded from 

consideration.  Thus, the challenge in composite variable formulation is the composite 

generation.  The objective of the composite generation process is not to generate all 

possible composite variables, rather it is to generate a small set with the hope that the 

optimal composites (or near-optimal) will be in that set.   

 

4.2.1 Example of the Benefit of Employing Composite Variables  
Unfortunately, most natural IP formulations of the type of battle management problems 

encountered in MICA are not readily solved, even with the latest IP solvers [2].  For this 

reason, a composite variable formulation proves extremely beneficial in solving these 

types of problems.  To illustrate the effectiveness of such an approach, we examine a 

simple delivery problem [8] and compare the formulation of the problem using traditional 

integer programming with the equivalent composite variable formulation. 

4.2.1.1 Integer Programming Formulation of Problem 
Consider the delivery optimization problem  defined on the network shown in Figure 4-1 

[1] [8].  The network has seven time periods and five physical locations.  The time 

periods are displayed in the columns in the form of numbers from one through seven.  

The five locations are listed in the rows:  base1, base2, tank1, tank2, and targ1.  Tank1 
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and tank2 represent tankers which can refuel our aircraft in flight.  Arrows indicate the 

feasible movements of aircraft in this time-space network.  For instance, the arrow from 

base1 at time period one to base1 at time period two indicates that an aircraft may stay at 

base1 from time period one through time period two.  The other option for an aircraft at 

base1 in time period one is to travel to base2, which is notated by the remaining arrow 

pointing out of base1 at time period one. 

 

t 1 2 3 4 5 6 7

base1 * * * * * * *

base2 * * * * * * *

tank1 * * * * * * *

tank2 * * * * * * *

targ1 * * * * * * *

t 1 2 3 4 5 6 7

base1 * * * * * * *

base2 * * * * * * *

tank1 * * * * * * *

tank2 * * * * * * *

targ1 * * * * * * *
 

Figure 4-1: Network Representing a Delivery Problem                                              
with 5 Locations and 7 Time Periods 

 
The decisions in this delivery problem are the movements of aircraft in each time period 

to one of five physical locations.  The objective is for the aircraft to “deliver weapons” or 

strike the enemy target (targ1) in the most efficient manner.  These decisions are 

represented by binary variables which are a special case of integer variables in that they 

are restricted to the integer values 0 and 1.  Binary variable formulation is used in 

problems with “yes” or “no” decisions.  Thus, state i, state j and time t can be represented 

by the decision variable xijt such that 

 

⎩
⎨
⎧

=
otherwise

periodtimeinstatetostatefrommovesaircraftif
xijt 0

1 tji
 

 
This move is made with the associated cost cijt.  The cost might represent any number of 

different factors to include the cost of aircraft attrition, fuel, etc.  Otherwise, xijt is set to 0 
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(“no”), representing that the aircraft will not move from state i to state j at time t.  

Therefore, the objective function of a relevant IP might be: 

ijt
ijt

ijt xc∑min          (4.1) 

     
 

 
A large number of constraints is required to ensure that the same number of aircraft 

entering each location also leaves it (conservation of flow constraints): 

∑∑ ∀=− +
j

ijt
j

jit tixx ,,01          (4.2) 

In addition, there may be additional constraints to ensure that there are enough aircraft to 

carry the required payload (enough supply to meet demand constraints): 
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       (4.3) 

where wijt represents the weapons flown from i to j at time t, and cap represents the 

weapons capacity of an aircraft.  The second constraint in Equation 4.3 is a capacity 

constraint that ensures that the amount delivered does not exceed the carrying capacity.  

These constraints can cause fractional solutions if the capacity of an aircraft is not exactly 

equal to the demand of the delivery points.  According to the objective function, it is 

cheaper to fly a fraction of an aircraft than to fly a whole one. This fractionality in the 

linear relaxation requires large numbers of branch-and-bound iterations in the 

corresponding IP.   

4.2.1.2 Composite Variable Formulation of Problem 
The equivalent composite variable formulation is depicted in Figure 4-2 [8].  A1, A2 and 

A3 are three unique aircraft types and the corresponding trajectories from the aircraft 

symbols represent the path the aircraft flies for the duration of its mission.  In the 

example, an A3 type aircraft begins at base1 in time period 3, flies to and attacks targ1 in 

time period 4 and then returns to base1 in time period 5.  This collection of decisions is a 

composite variable or option.  There are five composite variables for this example, one 

for each of the aircraft shown in Figure 4-2.  
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Rather than require the IP to solve the details of aircraft routes and loads, the 

composite variable formulation delegates that task to a large number of subproblems, in a 

form of hierarchical decomposition which was discussed in Chapter 3.   

t 1 2 3 4 5 6 7

base1 * * * * * * *

base2 * * * * * * *

tank1 * * * * * * *

tank2 * * * * * * *

targ1 * * * * * * *

A1 A2 A3

A1 A2

t 1 2 3 4 5 6 7

base1 * * * * * * *

base2 * * * * * * *

tank1 * * * * * * *

tank2 * * * * * * *

targ1 * * * * * * *

A1 A2 A3

A1 A2

 
Figure 4-2: Composite Variables Defined for the Same Delivery Problem  

 
The sub-problems are responsible for producing routes and aircraft loads that are 

potentially part of the globally optimal solution.  In other words, the subproblems 

generate the details of the plans for the pool of options or composite variables that will be 

used in selecting the final solution.  The characteristics of each route required by the IP 

are captured in coefficients produced by the subproblem [1].  In this example, the only 

characteristic from the subproblem needed by the composite variable master problem is 

the cost ci associated with route i.  The decision variables in the composite variable 

master problem are whether or not to choose the entire collection of decisions represented 

by each composite.  The decision variables zi are set to 1 when the corresponding 

composite i is selected, and set to 0 otherwise.  The resulting integer program is the 

following [1]: 

Minimize i
i

i zc∑  

Subject to:

{ } iz

Jsz
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         (4.4) 



 82

where Is is associated with covering constraints requiring that at least one of the options 

in each set is chosen, and Js is associated with requiring that at most one way to 

accomplish each objective is chosen [1].  The structure of this binary program, with all 

coefficients 0 or 1, is far simpler for the IP solver to handle.  However, the drawback as 

mentioned in Section 4.2 is that depending on the specifics of the problem, the composite 

variable formulation might involve a very large number of variables.  As seen here, the 

composite variable approach can combine many inter-related decision variables (in this 

example, aircraft loads and aircraft routing decisions) into sets of variables.  This avoids 

the fractionality aspects which are difficult for an integer program to solve.   

The composite variable formulation approach has proven successful in solving a 

variety of complex real-world problems.  UPS upper management conservatively credits 

$87 million savings over the last three years to the use of a composite variable 

formulation to solve their overnight delivery route design problem [6].  Composite 

variable approaches have also significantly improved solutions in military and delivery 

problems [7], [8], [13] and [23]. 

However, the aforementioned successes were for problems with specific structure 

that allowed the set of composite variables zi to be pre-calculated and stored within 

conventional memory limits [1].  Their structure allowed the identification and 

calculation of a relatively small set of dominant composite variables a priori.  We define 

a dominant composite variable to be one that represents a collection of decisions that is 

known to be superior to other sets of decisions.  These dominant composites eliminate the 

need to further create or consider any of the dominated sets of decisions.   

For example, in the composite variable formulation shown in Figure 4-2, suppose 

there was a composite variable representing a strike of targ1 using two small aircraft 

subjected to a low amount of risk.  For this to be a feasible composite, the two small 

aircraft would need to be able to carry enough weapons to carry out the strike.  This 

composite would dominate any other combination of aircraft chosen to strike the same 

target if their mission included flight routes exposed to higher risk or requiring more time 

to carry out the strike or more than two aircraft to supply the same amount of weapons to 

conduct the strike.  



 83

Within the more complex battle management problems that the MICA hierarchy 

must solve, the set of dominant composite variables, zi, is too large to exhaustively 

generate.  Because an exhaustive list of composite variables is not produced, the key to 

solving the problem then becomes how to generate the best possible pool of composite 

options.  This is not as trivial as trying to generate individually good options.  We want 

the collection of options that as a whole provide the overall optimal solution.  For 

example, even if one option within the pool is extremely good, it might have numerous 

overlapping constraints with other options whereby these other options within the pool 

can not be included in the solution.  This suggests that the global solution could be better 

with a collection of two not quite as good composites that don’t use as many resources or 

have as many overlapping constraints with other options.   

 

4.3 Hierarchical Decomposition (Multi-Level Optimization) 
The objective of hierarchical decomposition (multi-level optimization) is to decompose a 

complex optimization problem into a hierarchy of smaller, more easily solvable 

subproblems whose solutions combine in a way that retain the original objective and 

constraints of the complex problem [10] [3].  The simpler optimization problems are 

solved separately at each level of the hierarchy.  Throughout this process, solutions at the 

higher levels produce objectives and constraints that are used by lower levels in a way 

that ensures optimality and, depending on the decomposition method, feasibility.  More 

specifically, the higher levels of the complex problem coordinate the solutions of the 

decoupled lower level problems through the use of coordinating variables.  The original 

problem is solved by a master problem that sets the coordinating variables used within 

the subproblems.  The solutions to the subproblems at the lowest levels of the hierarchy 

represent a plan of activities that is pursued by physical entities to prosecute the goals of 

the larger original problem [1].  In the context of the MICA system used in this thesis, the 

physical entities are UAVs and the plans of activities are individual strike and sensing 

actions on enemy targets.  Hierarchical decomposition, when used appropriately, can 

reduce solution times dramatically with little or no loss of plan effectiveness.   
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4.3.1 General Approach  
Consider the following problem statement [3]: 

       ( )yxf
yx

,min
,

      subject to ( ) 0, ≤yxg   ;    where   [ ]TNxxxx ...21=          (4.5) 

 
The vector x is composed of N subvectors xi which are the decision variables associated 

with each of the subproblems at the lower levels.  The vector y corresponds to the 

decision variables that couple the subproblems through the objective function f, the 

constraint vector g or both.  These variables are referred to as the coordinating variables.  

The original problem can be rewritten in terms of a Lagrangian L with Kuhn-Tucker 

multiplier vector γ [3]: 

    ( ) ( )yxgyxfyxL T ,),(, γ+=         (4.6) 

The decomposition of the original optimization problem is achieved by creating 

an upper level problem referred to as the master problem.  When the master problem sets 

the value of the coupling vector y, the decomposition approach is referred to as 

interaction prediction or goal (feasible) decomposition.  When the master problem sets 

the value of the multiplier γ, the decomposition approach is referred to as price 

decomposition.  Given the values for the coupling variables, the Lagrangian can be 

rewritten as a sum of decoupled Lagrangians Li.  More specifically, setting a value for y 

leads to separability of both the objective function f and the constraint vector g.  This 

separability leads to the following formulation [3]: 

( ) ( ) ( )[ ] ( )yxLyxgyxfyxL i

N

i

N

i
iii
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= =

=+= γ       (4.7) 

Once the master problem sets the values for y, each of the N lower levels is responsible 

for solving a decoupled optimization subproblem associated with a sub-Lagrangian Li.  

Iterations between the upper and lower levels are required to achieve an optimal solution. 

 
( )yxf iixi

,min   subject to ( ) 0, ≤yxg ii       (4.8) 

 
         

 
The most important characteristic of the hierarchical decomposition technique is that the 

system-wide objective function and constraints are reflected in the solutions to the 

subproblems.  
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4.3.2 Goal Decomposition 
Goal decomposition ensures that the solution arrived at each iteration is feasible (satisfies 

all constraints).  In goal decomposition, the coordinating variables are used to break the 

problem down into independent smaller subproblems with sets of resources and sets of 

objectives. In an iterative process, the lower levels create solutions to their individual 

problems as well as sensitivity of those solutions to the values of the coordinating 

variables set by the master level. Given the “answers” to the subproblems and the 

sensitivity information, the master level resolves for the coordinating variables.  

Iterations continue until diminishing returns is achieved.  The sensitivity information can 

be viewed as providing insight to the master level as to how to redistribute resources or 

objectives to the lower levels.  For example, this might involve taking away resources 

from one and giving them to another, or redistributing objectives.  One of the keys of 

goal decomposition is that it ensures a feasible solution at each iteration.  Goal 

decomposition also ensures that an optimal solution will be found as long as there is no 

restriction on the number of iterations.  However, depending on the nature of the problem 

it may be difficult for the subproblems to develop the values of the sensitivities that are 

used by the master level in guiding its iterations. 

 

4.4 Comparison of Composite Variable Formulation and Goal 
Decomposition 

Goal decomposition and composite variable formulations have many similarities in the 

way that they are used to simplify large-scale complex problems.  Goal decomposition 

breaks down the larger problem into smaller, more readily solvable subproblems. 

Similarly for the composite variable formulation each composite can be viewed as a 

subproblem.  An “option” or composite is much the same as one of the lower level 

problems defined by the master level in the goal decomposition context.  That is, a 

composite is basically a subproblem that is defined (by some possibly heuristic 

mechanism) and is solved (i.e., aircraft missions to attack targ1 in Section 4.2.1.2) by 

some lower level optimization routine.  In the goal decomposition approach, the solutions 

to the lower level problems are passed back “up” to the master problem.  In the 

composite variable approach the value and cost (basically the solution without details) of 
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the defined options/composites are passed back to another (higher) level that uses an IP to 

select among the composites in order to achieve the best overall solution that satisfies the 

constraints.  A difference between the two is that the goal decomposition lower level 

solutions provide, in addition to the subproblem solutions, resource sensitivities back to 

the master problem.  These sensitivities are used to reallocate resources in a manner that 

produces a higher valued solution.  Goal decomposition is an iterative process whereby a 

feasible solution is obtained at each iteration and the optimal solution is eventually 

reached.  Composite variable formulations as defined in [5] do not include resource 

sensitivities and also do not necessarily involve an iterative process.  Typically, a 

composite variable formulation includes an a priori pool of all generated composites or 

options.  Based on this pool of composites, an IP solver selects the best composites 

subject to the constraints of the problem.  There is no guided iteration to improve the 

composite pool in an effort to reach an optimal solution in composite variable 

formulation, and therefore the quality of the solutions relies solely on the quality of the 

initial pool of composites generated.  Another contrast of the two is that in goal 

decomposition the collective lower level solutions always combine to yield a feasible 

solution to the overall problem.  In the composite variable approach, the lower level 

problems “overlap” in the sense that some of them may be addressing the same objectives 

or in that some of them may be using the same resources – the higher level IP sorts 

through the composites to choose the set that yields the most value while satisfying 

objective and resource constraints.  Figure 4-3 and Figure 4-4 provide a graphical 

depiction of composite variable formulation and goal decomposition respectively. 
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Composite Variable ApproachComposite Variable Approach

• Broader set of options – gives you better chance of obtaining optimal 
solution.

• NOT an iterative process.  IP optimizes over the available composite 
options.

Non MUTEX resources
in composite options

Tries to overcome lack 
of iteration by giving 
you more options in 

option pool so that the 
‘optimal solution’ will 
be contained in these
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Much broader set of 
options here than in 
goal decomposition

IP that resolves
resource conflicts.

Optimizes over given 
composite options.

Master Problem

Subproblems

 

Figure 4-3: Composite Variable Approach 
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• Solutions to the subproblems and the associated resource sensitivities are sent 
back to the higher level or master problem.

• The available resources are provided from the master problem to each of the 
subproblems.

• If  the starting solution is close to optimal, there will be fewer iterations to get to 
the optimal solution.

• The term MUTEX is used because the master level is providing a constraint-
feasible allocation (e.g., MUTEX) of resources. 

MUTEX of resources
In every step of solution,
All solutions are feasible

Master Problem

Subproblems

Improve 
resource allocation

 

Figure 4-4: Generic Goal Decomposition 
 

4.5 Iterative Composite Variable Approach 
Both goal decomposition and composite variable formulation have their weaknesses.  In 

goal decomposition, if the initial guess at the coordinating variables is far from their 

optimal values, it may take many iterations before the optimal solution is reached.  The 

solution quality of a problem formulated using composite variables relies heavily on the 

quality of composite options available to choose from.  If poor composites are initially 

generated, the global solution will suffer as a result.  To overcome these limitations, we 

propose here an approach that combines the strengths of the two techniques into an 

Iterative Composite Variable Approach.  In this approach, a pool of composite variables 

is iteratively developed, rather than attempting to pre-calculate a good set of dominating 

composite variables.  In this approach, the decision variables are formulated using 

composite variables and an iterative approach is used to generate new composites in an 
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“intelligent” way.  The “old” composites would be kept as well, resulting in one large 

pool of composites to choose from.  By having a larger pool of composites to choose 

from, the quality of the solution can at worst stay the same.   

Figure 4-5 illustrates an iterative process of arriving at an optimal solution 

combining goal decomposition and composite variable formulation.  Given the value of 

the decoupling variables y (in our case available resources), each subproblem provides 

the master level with its best solution defined in terms of decision variables xi and 

associated sensitivities γi [1].  The master problem uses the decision variables and 

sensitivities to update the values of the decoupling variables (reallocate resources) and 

improve the overall solution across all subproblems on the next iteration (k iterations).  

Each of the subproblems can be solved independently.  The solution to each subproblem 

is coordinated with the other subproblems through the decoupling variables.  

• Composite Variable Subproblems
– Optimize their respective subproblem given the available resources y provided to them by the Master Problem
– Provides solutions x and sensitivities γ back to the Master Problem

• Master Problem
– Based on the solutions and sensitivities provided by subproblems, reallocates resources to subproblems in effort to generate 

more valuable overall solution
– Contains constraint that ensures global solution does not use more resources than are available

Master Problem
Solver

Composite
Subproblem

Solver
#N

Composite
Subproblem

Solver
#1

Composite
Subproblem

Solver
#2

 - 
- ˆ

,

,

ki

kix
γ

subproblem solutions

subproblem sensitivities

i - Sub-problem index;      k - iteration index

kiy , - resources provided from Master to subproblems

Figure 4-5: Iterative Solution to a Decomposed Problem 
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Figure 4-6 [1] focuses the iterative process on the use of composite variables.  The 

process starts with an initial set of subproblem solutions (options).  These solutions are 

also referred to as plan fragments.  The subproblem solution values x and sensitivities γ 

of the plan fragments are used to create a composite variable formulation which is solved 

using standard integer programming techniques. This process is repeated at each new 

iteration until the subproblems have maximized their value subject to resource 

coordination. 

 

Composite Generator
Sub-Problem

Objectives

Maximize
value subject

to coordination

Composite Master Problem
1 0 0 0 1 1 1 
0 0 1 1 1 0 0 
0 1 0 1 0 0 0 
1 1 0 0 1 1 1 
0 1 0 1 1 0 0 

Composite
poolCoordination

 
Figure 4-6: Composite Variable Master and Sub-Problem 

 
A specific implementation of the Iterative Composite Variable Approach might employ a 

variety of techniques at each stage of the process outlined above.  For instance, the 

composite variables (plan fragments) might be generated by any number of methods and 

placed into the composite variable pool.  Some of the more common techniques are 

displayed in Figure 4-7.   
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Figure 4-7: Different Techniques for Creating/Updating Composite Variable Pool 

 
Our research focuses on incorporating a human to aid in composite generation.  We 

hypothesize that the use of HMCDM in the creation of the composite variable pool will 

lead to superior results.  Chapter 5 presents experiments whereby human test subjects are 

permitted to interact iteratively with a computer in an attempt to create an improved pool 

of composite variables for the MICA problem described in Chapter 3.  In these 

experiments, the subjects create an initial pool of composite variables.  Computer 

algorithms and heuristics are used to generate additional composites which are placed 

into the pool along side the human generated composites.  The subjects are then shown 

information regarding each of the composites residing within the pool of options.  Based 

on this information, they decide which composites should remain in the composite pool at 

the next iteration.  Their choices are then used to select the plan fragments that are used 

in the final solution.  This Iterative Composite Variable Approach takes advantage of the 

iterative nature of goal decomposition and the combination of decision variables of 

composite variable formulation. 
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Chapter 5  
 

Explanation of HMCDM Experiment 
 
Software developed at The Charles Stark Draper Laboratory designed to simulate a C2 

system of resource allocation and planning entitled Mixed-Initiative Control of Automa-

teams (MICA) was used as the simulator for experiments to probe the ideas for human-

machine collaboration that have been described in this thesis.   

 

5.1  Experiment Participants 
The study consisted of five participants.  All participants were employed within the 

Decision Systems Group of the Control, Information, and Decision Systems Division at 

Draper Laboratory.  All five were graduate students in engineering at the Massachusetts 

Institute of Technology.  In addition, all participants received their undergraduate degrees 

in Operations Research from The United States Air Force Academy.  All of the 

participants were Second Lieutenants in the Air Force and therefore had knowledge of 

military planning, objectives, and strategy.  None of the participants had previous 

experience using the MICA platform or any similar resource allocation simulation until 

these experiments.    

The experiments consisted of five independent scenarios, which varied in size and 

complexity.  Size was defined as the number of enemy targets contained within the 

scenario.  Complexity refers to the perceived difficulty.  This was determined by the 

amount of interaction between targets and the amount of overlapping or covering targets.  

The scenarios were created to gather insight into the benefit of HMCDM with varying 

levels of size and complexity.  In each scenario, the location, type, and damage state of 

all enemy targets were given with nearly 100% certainty.  The details of the scenarios are 

outlined in Chapter 6.  All five participants independently ran each scenario once. 
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5.2 Goal and Expectations of the Experiment 
The objective of the experimental analysis was to determine if incorporating humans into 

the loop of existing computer optimization planning and resource allocation algorithms 

would produce better solutions.  The experiments were run at three distinct levels of 

human and machine interaction: human only, human-machine collaboration (HMCDM), 

and computer only.  The hypothesis was that solutions generated through the 

collaborative effort of a human and a computer would produce better solutions than either 

human only or computer only solutions.  However, this result was not expected in all of 

the scenarios.  For large, very complex scenarios, it was hypothesized that the subjects 

would have a hard time adding a significant benefit due to trouble grasping all aspects of 

the entire problem.  It was expected that they would be overloaded with too much 

information and therefore not be able to cluster all of the targets within the scenario 

efficiently.  However, in such scenarios, the subjects might be able to easily identify and 

efficiently cluster sub-sections of the map allowing them to simplify some portion of the 

scenario.  These same target cluster groupings might not be as “obvious” for a computer, 

thereby resulting in a significant amount of time and computing power to achieve.   

For scenarios small in size, the benefit added by the human was expected to be 

minimal.  In such scenarios, the computer is able to enumerate and evaluate all possible 

target clustering combinations very quickly and therefore come close to an optimal pool 

of options in a short amount of time.  A significant benefit from human involvement was 

also expected in scenarios containing numerous enemy targets but not containing 

complicated threat coverage schemes.  In these scenarios, the humans were expected to 

use spatial reasoning skills and easily identify clustering schemes in a short amount of 

time.  If such scenarios were left solely to the computer, the number of targets would 

result in considerable computation time and the resulting clusters would most likely be 

similar to those created by the human operators. 

Noteworthy benefits from HMCDM were also expected in medium size scenarios 

and those scenarios with low to medium complexity.  Medium size scenarios are large 

enough that complete enumeration by the computer in a short amount of time is not 

realistic.  Scenarios with low to medium complexity lend themselves to HMCDM as the 
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key human strength of spatial reasoning and understanding can be combined with the 

computer visual representation.  

 

5.3 Experimental Simulator 
The experimental apparatus consisted of a dual window Graphical User Interface (GUI). 

This provided the participants with two windows:  a left window entitled the “Human 

System Interface” and a right window entitled “MICA Information Display.”  Figure 5-1 

shows the left window of the dual window display.  It contains five main components: a 

Common Operational Picture (COP) or Map View, information filters, navigation tools, 

an operator alert button, and team and vehicle information views.  The focus in this 

window was the Map View, which contains a geographic view of target location along 

with a unique target ID number.  In addition, friendly or “blue” assets as well as terrain 

information like roads, regions of control, etc. are visible in this Map View.  

Figure 5-2 shows the right-hand window.  It features various information tab 

panes with controls that present more detail at various levels of the controller hierarchy, a 

means of navigating between hierarchical levels, a mixed-initiative interaction panel for 

accepting or rejecting controller requests, outstanding decision and mission log tables, 

and a message log window. 
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Operator alert button

Navigation tools

Common Operational Picture

Team and vehicle views

Information filters

 

 

Figure 5-1: Human System Interface (Left-Hand Display) 
 

 Hierarchy Navigation

Information Tab Panes

Hierarchy Block Diagram

Mixed Initiative Interaction Panel

Message Log Window

Outstanding Decisions and Mission Log Tables

 
Figure 5-2: MICA Information Display (Right Hand Display) 
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Not all of the available features in the MICA Information Display were used in this 

particular experiment.  However, the features that were used are outlined throughout this 

chapter. 

Figure 5-3 shows the top-level objectives and Rules of Engagement (ROEs) 

display.  It gives a synopsis of the commander’s objectives for this mission as well as 

what ROEs must be followed for mission success. 

 

 
Figure 5-3: The Top-Level Objectives and ROE Component 

 

From the “Blue Resources” menu tab, Figure 5-4, the users were able to obtain 

information on which aircraft were available for each of the given scenarios.   
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Figure 5-4: Blue Resources Menu 

 
The “Track Information” menu, Figure 5-5, lists all known tracks.  It breaks out the 

tracks into identified and unidentified where the unidentified are any track whose type 

certainty is less than 50%.  The ID, type certainty, damage certainty, and destruction 

certainty for each track is listed as well. 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: Track Information Menu 
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The “Target Kill Value” menu tab, Figure 5-6, shows what value is associated with 

destroying each one of the target types within the scenario.  The MICA Information 

Display also contains the menu tabs “Target Awareness Value”, “Target BDA value”, 

and “Aircraft Value.”  Each of these menus is very similar to the “Target Kill Value” 

menu shown below in Figure 5-6.  In addition to standardizing values for targets of 

similar types, it is also possible to adjust the value of specific enemy tracks of the same 

type.  This is done in the “Per Track Importance” menu tab (Figure 5-7).  Within the 

MICA framework, all values contained in each of these menu tabs are adjustable.  

However, for the purposes of this experiment, the values were set at default values and 

the subjects were not able to adjust them.   

 

 
Figure 5-6: Enemy Target Type Value 
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Figure 5-7: The Per Track Importance Component 

 
The friendly assets in these scenarios consisted of several types of unmanned 

aerial vehicles (UAVs).  There are five primary types of UAVs: large sensor, small 

sensor, large weapon, small weapon, and small combo.  Each aircraft platform type has 

different possible configurations of sensors and weapons.  For example, “weapon” 

aircraft can only carry weapons, “sensor” aircraft can only carry sensors, and “combo” 

aircraft can carry both weapons and sensors.  The adjectives small and large refer to how 

many weapons or sensors the aircraft can carry.  For example, a large weapon aircraft 

can carry twenty weapons while a small weapon aircraft can only carry eight.  The UAVs 

that were capable of carrying weapons were restricted to use a single weapon type, the 
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homing missile.  The homing missiles can be delivered to any target within a 40 km 

radius.  There were three main types of enemy targets common to all five scenarios: the 

Long Launcher, the Medium Surface to Air Missile (SAM) sites, and the TEL Support.  

The Long Launcher is capable of firing surface-to-air missiles at UAVs a maximum of 80 

km away, significantly outranging the homing missile.  This imbalance requires that a 

UAV safely navigate deep within a Long Launcher’s engagement zone in order to attack 

it.  The use of two UAVs is needed in order to safely perform such a maneuver; one to 

jam the Long Launcher’s ability to track aircraft and the other to fly inside the threat zone 

to a distance within 40km to attack the target.  The default value for destroying a Long 

Launcher is 15.  The Medium SAM can only fire at targets within a distance of 38 km.  

This makes it possible for a single UAV to safely attack a lone Medium SAM.  It is not 

necessary to apply the standoff-jamming tactic against a Medium SAM as long as the 

location of the SAM is sufficiently known.  The default value for destroying a Medium 

SAM is 25.  The TEL Support does not have the ability to fire weapons.  Therefore, it 

does not pose a significant threat to any of the unmanned vehicles.  However, these 

targets are given a high priority, they are worth a value of 300 if destroyed. 

 

5.4 Procedures 

5.4.1 Training Scenario 
At the beginning of the experiment, the overarching goals of the scenarios and the 

procedures were described to each of the participants.  They were also told how they 

would be evaluated at the conclusion of their experiment.  They were told to cluster 

enemy targets in a way that would generate the maximum overall solution value while 

trying to destroy high value targets as quickly as possible, using the minimum number of 

resources possible (both weapons and aircraft), with minimum aircraft attrition, while 

conducting the entire mission in the shortest amount of time possible.  They were also 

told that they would be timed throughout the simulation.  More will be discussed on the 

evaluation metrics in Section 5.5.   

The participants then received training, which consisted of observing an example 

scenario and performing dry runs.  In the observed example, a human operator made the 
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decisions of which targets to cluster and which target-aircraft options to choose.  

Participants were given unlimited time with the simulator to conduct as many dry runs as 

necessary to become familiar with the software.  The practice runs were performed on 

one, basic scenario, shown in Figure 5-8.   

 

 

 

Figure 5-8: Training Scenario 
 

The training scenario, shown in Figure 5-8, was created to allow the subjects to 

become familiar with different target types as well as different threat coverages.  As seen 

in Figure 5-8, Targets 123, 124, 125, 126, 127, & 128 are all Medium SAM sites; Targets 

115, 116, 117, & 118 are TEL Support’s; and Target 122 is a Long Launcher.  The 

scenario was also designed to allow the participants to become familiar with the different 
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types of threat coverage, which are illustrated by the size of each target’s associated 

threat ring.  The three types of coverage used in this simulation are full, multiple, and no 

coverage.  The training scenario was designed to include at least one example of each of 

these types of coverage.  Full coverage does not allow the participants to simply attack 

the TEL Support Target 115 by itself, in the training scenario, because the Medium SAM 

Target 125 would have to be destroyed first.  Multiple coverage is depicted in the training 

scenario using Targets 118, 128, & 122.  The TEL Support Target 118 cannot be 

destroyed until the Medium SAM Target 128 is destroyed which itself cannot be attacked 

until the Long Launcher 122 is taken out.  Finally, targets 116, 117, 123, 124, 125, & 127 

could each be attacked independently without having to destroy any other targets first, 

which represents no coverage. These examples are present in the basic scenario so the 

users can develop their strategies during the training scenario in order to reduce the 

learning effect that would otherwise occur between the scenarios.  Each participant was 

given as much time as they wanted to familiarize themselves with the program. 

 

5.4.2 Initial Human Cluster Selection 
Once the subjects were satisfied that they no longer needed practice on the training 

scenario, the experiment scenarios commenced.  The information available in the menus 

described in Section 5.3 was used by the subjects to select and submit clusters of targets 

to the computer for initial evaluation.  This was done through the use of a text file in 

which the users select the target IDs they wished to be clustered together.  Each line in 

the text file signified a separate cluster of targets.  For example, Figure 5-9 is an 

illustration of possible clusters the user might have entered based on the training scenario 

in Figure 5-8.  This input corresponds to four distinct enemy clusters: one cluster includes 

Targets 115 & 126, one contains Targets 116, 117, & 127; and so on.  It is important to 

note that the ordering of the Target ID numbers within each cluster (i.e. Target 115 being 

placed “before” 126 in the first cluster) as well as the ordering of the clusters on the 

respective lines in the text file (i.e. the cluster with 115 and 126 being on the first line of 

the text file) were not significant.  The information was read into the system in the same 

way even if the user would have entered the third line as {124 123 125} or if the clusters 

on the fourth line and first line were switched.  
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Once the user decides which targets they would liked clustered, they input them 

into the text file as noted above, save the text file, and then click the “Commander’s 

Intent” button in the MICA Information Display GUI to have this information sent into 

the program, Figure 5-9 and Figure 5-10. 

 

 
Figure 5-9: Human User Inputting Enemy Target Clusters for Evaluation 

 
 

 

1

2

 
Figure 5-10: Sequence for User to Send in Initial Human Generated Clusters 

 

The computer takes this initial set of human generated clusters and begins to build 

upon each of the composite variables by adding on teams of aircraft to clusters of enemy 

targets.  Each of these enemy cluster-aircraft team pairings is referred to as a cluster-team 

option.  In some cases, the computer will add multiple different teams of aircraft to the 
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same cluster, with each different team-cluster corresponding to a unique option.  For 

example, a cluster containing Targets 116 & 117 and assigned a team consisting of one 

small combo aircraft and one large weapon aircraft is a different option from one that the 

contains the same Targets 116 & 117 but has assigned a different team of aircraft (i.e., 

one small combo and one small sensor).  In addition to the computer adding aircraft 

teams to the human specified clusters, the computer will also generate entire options on 

its own.  The computer follows the same process as the human operator by first choosing 

enemy targets to cluster together and then assigning aircraft to these clusters.  Further 

description on this process is provided in Chapter 3.   

 

5.4.3 “Human Only” Experiments 
There were two separate types of experiments that involved a human, a “Human Only” 

experiment and a “Human-Machine Collaboration” experiment.  The terms referred to the 

amount of human involvement in the initial creation of the composite variables which in 

this case is the clustering of enemy targets.  The procedures varied slightly for each.  For 

the creation of clusters by the human only, the following set of procedures was used: 

 
Human Only Creation of Clusters 

• Human looks at map generated by MICA showing location and type of enemy 
targets. 

 
• Human inputs finalized clusters based solely upon their inspection of the map 

layout. 
 
• Computer adds on details to these clusters at lower levels of planning. 
 
• Metrics are obtained at the conclusion of the experiment for analysis into the 

quality of solution. 

 

Table 5-1: Flow of Experiment for Human Only Creation of Clusters 
 

5.4.4 “Human-Machine Collaboration” Experiments 
The difference in the HMCDM experiments was the fact that the involvement represented 

an iterative process.  This iterative process was created based on the Iterative Composite 
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Variable Approach represented in Chapter 4.  In these experiments, the humans entered 

an initial set of clusters which were evaluated by a computer.  The results of this 

evaluation were displayed back to the humans in the form of the Key Pieces of 

Information (KPI).  Based on this information, the humans were then able to modify or 

select clusters (composites contained in the composite variable pool) in an attempt to 

achieve the global optimal solution to the scenario.    

Human-Machine Collaborative Cluster Creation 
 

• Human looks at map generated by MICA showing location and type of enemy 
targets. 

• Human inputs clusters they wish to gain more information about into a text file. 

• Input file with human clusters read into the MICA system. 

• Computer adds on aircraft teams to human created clusters, these are now referred 
to as cluster-team options. 

• Key Pieces of Information (KPI) about each of these options is created. 

• Computer generates own cluster-team options using existing system heuristics. 

• KPI about computer generated options are gathered. 

• KPI for all options (both human and computer generated) are output to the human 
user. 

• Human uses all of the given KPI in order to decide which options he/she wants to 
select for the final solution. 

• User inputs their desired options for the final solution into a second text file. 

• Computer checks for overlapping resources in chosen options. 

o If aircraft resources overlap, computer checks for availability of same type 
of aircraft to use instead. 

 If same type of aircraft available, computer substitutes this aircraft 
into one of the clusters. 

 Otherwise, computer will de-conflict the overlapping options by 
selecting the option(s) that fit into the overall plan the best. 

o If enemy targets overlap, computer selects option(s) which fit into overall 
plan the best. 

• Metrics are obtained at the conclusion of the experiment for analysis into the 
quality of solution. 

 

Table 5-2: Flow of Experiment for                                                                        
Human-Machine Collaborative Creation of Clusters 
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5.4.5 Key Pieces of Information (KPI) 
The KPI are the pieces of information the human operator needs in order to make 

intelligent choices as to which cluster-team pairing options should be chosen in order to 

create the best global solution.  Methods for determining which pieces of information 

should be contained in the KPI are qualitative because they are very dependent on the 

context.  In each particular program or system, the KPI could be completely different; 

however, the main goal of the KPI remains the same.  This goal is to strike the 

appropriate balance between ensuring the human is given enough information to make 

intelligent choices yet not overwhelming them with too much information.    

The KPI chosen for this research are listed below: 

• Targets - The targets that are contained within each option.  In a human generated 

cluster, these targets are specified by the human operator whereas in the computer 

generated clusters, the targets are selected by the heuristics in the automation. 

 
• Aircraft - The aircraft assigned in each option.  The aircraft teams assigned to 

each cluster of enemy targets are always done by the computer in this experiment.  

However, future research could examine if there is a benefit to allowing the 

human operator the option of controlling this function and specifying the aircraft 

teams themselves.  This idea was discussed in Section 3.3.2. 

 
• Value – The value associated with each cluster-team option.  This information is 

obtained from lower levels in the MICA planning hierarchy.  After the cluster-

team options are sent down the hierarchy, the lower planning levels decide what 

actions should be taken on each of the enemy targets within the cluster with 

respect to which aircraft are assigned to the cluster.  Based on these decided 

actions (sensing the target, attacking the target, any combination of sensing and 

attacking, or carrying out no action), the system is able to calculate the value that 

is generated based on the cluster-team options chosen. 

 
• Time – The time to carry out the actions within each cluster-team option.  This 

information is also gathered from lower levels of the MICA planning hierarchy.  
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Once the lower levels decide what actions should be taken on each of the targets 

they then calculate the expected time to carry out these actions.  

 
• Risk – Risk is calculated by summing the probability of attrition for all of the 

aircraft within each cluster-team option.  Again, this information is gained from 

the lower levels in the MICA planning hierarchy.  After the automation decides 

what actions are to be taken on each of the enemy targets, the lower planning 

levels determine which aircraft will carry out these actions, the specific flight 

routes to achieve these actions, and the geographic points on the map from which 

the aircraft will sense or attack.  Based on this information, the system is able to 

calculate the risk associated with each cluster-team option.  

 
• Efficiency of Resources – The ‘Efficiency of Resources’ piece of information 

pertains to both the weapons and sensors that are planned for use by the aircraft in 

each cluster-team option.  One of the goals is not to waste resources.  If there is a 

cluster consisting of only one or two enemy targets, only one, or at the most two 

aircraft are needed to meet the mission goals.  The efficiency is measured in terms 

of percent usage.  For example, if 40 weapons are available due to the aircraft in 

the option but the plan includes using only 4 of those weapons, then only 10% of 

the weapon resources are used.  

 
• Cluster created by whom – Each option is also labeled as to whether the human 

created the enemy cluster or whether it was entirely computer generated.  We felt 

this would be an interesting aspect to study, capturing whether the human user 

had a preference for ultimately choosing their own options or if they felt more 

confident in the computer generated options. 

 
The KPI are output to the human via a text file.  Figure 5-11 is an example of 

these KPI.  Each option is numbered starting with OPTION 0.  The KPI is presented to 

provide the human with the information necessary to evaluate each of the given options 

and choose the subset of options that will lead to the best overall global solution.  Again, 

there is no single metric to tell the user which option is the ‘best’ or which combinations 
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of options are the ‘best’.  They are to pick the options based on the top-level objectives, 

ROEs, (Figure 5-3) and the following evaluation metrics: overall solution value, time to 

destroy high value targets, number of resources used (both weapons and aircraft), aircraft 

attrition, the amount of time the entire mission took in the simulation, and the amount of 

real world time for the mission to conclude.  These metrics are described in further detail 

in Section 5.5. 

 

 
Figure 5-11: Key Pieces of Information (KPI) shown to human user 

 
Once the human decides which options to include in the final solution, they input their 

choices again through a text file.  For example, if they wished to include Options 0, 1, 

and 4; they enter the numbers 0, 1, and 4 on the first line of the text file, resave the file, 

and then press any key for the program to start running again (see Figure 5-12).   
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See KeyPiecesOfInformation.cvs for list of generated options 
Edit chosenOptions.txt to choose options (by ID) for final plan 
Then hit any key to continue 

 
Continuing… 
See KeyPiecesOfInformation.cvs for list of selected options 

 

Figure 5-12: Human Choosing Cluster-Team Options 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13: Representation of Human Selected Options 
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The options that the human selects will be included in the solution as long as the 

options represent a feasible set of solutions.  The only case in which not all of the human 

chosen options are included in the final solution is the case of the human choosing 

different options that contained the same targets.  

It is important to note that the collection of all cluster-team options do not 

represent a set of mutually exclusive elements.  For example, there might be multiple 

options that contain the same targets or the same aircraft.  The number of times the 

subjects chose options that contained overlapping targets or aircraft was recorded.  This 

was done to see how many options became too many options.  It was hypothesized that if 

there were an excessive number of options for the human to choose from, they might 

become overwhelmed and might mistakenly choose options that contain the same targets 

or the same aircraft.   

A hypothesis was also made that in some cases, the user might actually want to 

choose overlapping options.  If there were multiple options that the user felt were equally 

as good yet they contained overlapping items, they might be indifferent as to which 

option they select, as long as at least one of them is included in the final solution.  In 

order to resolve this, after the experiment, the subjects were asked if they selected options 

with overlapping items on purpose or by accident due to being overwhelmed or confused.  

In the event that the human selected multiple options with overlapping targets, the system 

ran through its algorithm of evaluation and selected which options fit more easily into the 

overall plan.  For example, the algorithm would remove the lowest valued overlapping 

option until a feasible solution was reached.  However, the computer’s process for 

handling options with overlapping aircraft was slightly different.  If the human selected 

options with overlapping aircraft, the program would first search the inventory of 

available aircraft to see if there was another aircraft of the exact same type that was not 

being used.  If there were not any available aircraft of the same type, then the computer 

would choose whichever aircraft option fit more easily into the overall plan.    

After the participant input their desired clusters and resumed the program, the 

initial file in which the options and KPI were listed was appended at the end to include 

which options were ultimately selected to be part of the overall solution.   
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From this point on, the control was left entirely to the computer.  After the system 

was given the selected options, this information was sent to the lower levels of the MICA 

hierarchical program to add the remaining pieces of information to finish creating each 

composite variable.  In this particular case, the human supplied the computer with the 

enemy targets to be contained in each cluster along with the associated aircraft to be 

assigned to each cluster.  The computer then added on information as to which aircraft 

would perform each particular action against each enemy target.  The lower levels of the 

MICA planning hierarchy also added on routing information for each of the aircraft, 

locations on the map for aircraft to release weapons and/or use sensors, etc.  Refer back 

to Chapter 3 for further information on the hierarchical creation of the composite 

variables.  

 

5.5 Evaluation of Human Involvement 
As it was mentioned in the beginning of this chapter, the goal of this experiment was to 

gain insight into the optimal way to incorporate the strengths of a human operator with 

the strengths of a computer to create the “best” possible solutions.  Therefore, in order to 

evaluate human involvement, metrics were identified to determine if adding the human-

in-the-loop for the creation of target clusters added any benefit to the overall solution.  In 

addition to each of the five participants running the five scenarios, each scenario was also 

run without any human involvement.  These solutions were used as our baseline for 

comparison and were referred to as “computer only” solutions.  Because of the 

complexity of the problem of C2 resource allocation and mission planning, there are 

many metrics that determine the quality of a solution.  For this experiment a qualitative 

evaluation, which takes into account multiple quantitative metrics, was used.    In military 

mission planning there is an inherent trade-off between risk and return.  Also, the return 

is not always obvious.  For example, in some situations it is necessary to develop a plan 

in the shortest amount of time possible, despite the quality of the plan.  At other times, 

the number of resources used might be the most crucial return indicator.  Therefore, 

metrics for risk and return, on multiple levels were used to evaluate the quality of the 

solutions for each scenario.  The details of the metrics chosen are described below: 

  



 113

• Value of the overall solution – The value of the overall solution was obtained by 

adding the value obtained from each of the cluster-team pairings throughout the 

life of the scenario.  The beginning of Chapter 3 provides a further description of 

the value.  This value was described in more detail in the beginning Chapter 3. 

 
• Time to create the initial mission plan – This metric is important because although 

there may be plan solutions that contain more value, they might also take 

significantly more time to create.  Analysis of this data will allow for comparison 

of the overall solution vs. time trade-off.   

 

• Attrition of aircraft – This is an essential metric because there is a possibility that 

solutions might be generated with higher value and/or solutions that have the 

mission conducted faster but that also might have a higher attrition of aircraft.   

 
• Number of weapons used – If there are two equivalent solutions yet one is using 

considerably less weapons to achieve the same solution, this will be the superior 

option.  The only weapons available for these experiments were homing missiles. 

 
• Number of aircraft used – All else being equal, it is best to implement a solution 

that uses fewer aircraft. 

 
The degree of overlap in the solutions created by a human user versus those 

generated solely by the computer was another interesting piece of information examined 

at the end of the experiment.  It was analyzed to give insight into the similarities of the 

human and computer strategies.  If there was a large amount of overlap in multiple 

scenarios this would show that there was not much gained by placing a human-in-the-

loop. 

Finally, information was gathered on how often the human users chose their own 

created clusters versus how often they chose clusters that were created by the computer. 

This data allows conclusions to be drawn on the human’s confidence in their own 

solutions versus computer created solutions. 
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Chapter 6  
 

Results of HMCDM Experiments 
 
This chapter describes the HMCDM experiment scenarios and results in detail.  Five 

scenarios were run at three distinct levels of automation with respect to the involvement 

in the process of clustering enemy targets: human only, human-machine collaboration, 

and computer only.  The chapter begins with highlighted results from the experiments.  

Analysis of the individual scenario results as well as broad analysis encompassing the 

collection of scenarios is given later in the chapter.  All averages discussed for the human 

only and human-machine collaboration experiments were calculated as an average of the 

results from each of the five participants.  There was only one result for the computer 

only experiments, therefore an average was not necessary.  The computer only results 

were generated on a run of the experiment without collaboration for each scenario.  The 

value of the solution equals a summation of the value accumulated from each target “hit” 

within the scenario. Determination of individual target values is described in detail in 

Chapter 3.   

 

6.1 Overall Results 
Figure 6-1, Figure 6-2, and Figure 6-3 provide comparisons of the solution value 

generated using each level of automation.  Figure 6-1 breaks down the average value 

generated in each scenario for the varying levels of automation.  This figure depicts that 

with some level of human involvement, equal or higher valued solutions were created in 

every scenario.  Figure 6-2 further illustrates the results for the average value achieved in 

each scenario by the human only, human-machine collaboration, and machine only levels 

of automation.  Standard error bars are given for the human only and human-machine 
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collaboration results.  Figure 6-3 provides a normalized comparison of the solution 

values.  This figure shows that on average the human-machine collaborative plans 

produced the highest value.   

 
 

 
Figure 6-1: The Average Value Generated for each Scenario                                   

and Level of Automation 
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Figure 6-3: The Overall Average Value Generated 

 
There is a trade-off associated with the increased value of the human machine 

collaboration plans.  In addition to generating the most value, these plans also took the 

most amount of time to create.  The additional time to create the collaborative plans can 

be attributed to the humans evaluating and studying the KPI in order to select cluster 

options (Step 9 in the HMCDM Experiment Algorithm, see Chapter 5).  This step was 

not part of the decision making algorithm in either the human only or computer only 

Average Value Created in each Scenario 
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experiments.  Figure 6-4 shows the average time to create the initial plans for each level 

of human and machine interaction: human only – 102 seconds, human-machine 

collaboration – 289 seconds, and computer only – 81 seconds.  Human-machine 

collaboration plans took a little over three additional minutes to create.  This is not a 

significant issue because this additional time would be in the mission pre-planning phase.  

However, this finding has implications for real-time, dynamic human-machine 

collaborative re-planning in a time critical mission.  In such a case, the additional three 

minutes could pose a problem.  Figure 6-5 portrays the relationship between the time to 

create the plan and the value achieved.  The graph suggests a direct correlation between 

the two factors.   
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Figure 6-5: Value of Solution versus Time to Create Plan 

 
 During human-machine collaborative planning, the subjects were provided feedback 

in the form of KPI about the clusters they created and clusters that were generated by the 

computer (explained in detail in Chapter 5).   One of the pieces of information was 

whether the cluster was created by the computer or the human.  The subjects were then 

responsible for selecting clusters to place in the final solution.  The subjects more 

frequently chose the cluster options they created, as shown in Figure 6-6.  Human created 

clusters were chosen 60.6% of time while only 18.3% of the computer generated clusters 

were chosen.  This was because the subjects understood the strategies they applied to 

construct their own clusters.  The subjects were less likely to understand the computer 

generated solutions because they did not completely understand the rationale behind 

them.  A detailed breakdown of the analysis for each of the five scenarios is given later in 

Section 6.7.4 and Figure 6-28.   
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Figure 6-6: Percentage of Human and Computer Created Clusters Ultimately 
Chosen by the Human Participants for Inclusion in the Final Plan 

 

6.2 Scenario #1 – Wall of Medium SAMs 
This scenario contains a medium number of targets and is simple in complexity.  A map 

layout depicting the spatial configuration is shown in Figure 6-7.  The Wall Scenario 

consists of a “wall” of low value threatening targets (Medium SAM Sites with a value of 

25 each), which block access to three very high value, low threat targets (TEL Supports 

with a value of 300 each). 

 
Figure 6-7: Map Layout of Wall Scenario 
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6.2.1 Results of Wall Scenario 
Figure 6-8 shows that the results for this scenario are in favor of involving a human in the 

process of creating the enemy target clusters.  The “Avg. Time to Create Initial Plan” is 

the only metric that favors using a computer to conduct the clustering.  The metrics 

depicting the attrition of aircraft, number of aircraft used, and number of weapons loaded 

were relatively equivalent throughout each of the three levels of human-machine 

interaction.  However, there is a significant disparity in terms of the value created.  The 

average value created across the five participants for the “Human Only” level of 

involvement was 555, while the average for the “Human-Machine Collaboration” was 

830.  These numbers are in comparison to the value of 25, which was generated when the 

clustering was left to the computer alone.  These results correspond to a 3220% increase 

in the value of the solution when human-machine collaboration was present versus the 

computer only solution.  However, there is a trade-off for this significant increase in 

value.  Solutions for this scenario involving human-machine collaboration took, on 

average, more than two minutes longer to create.  The “Human Only” solution contains 

2120% more value than the “Computer Only” solution but took an average of twenty four 

seconds more to create.  In an operational setting, the time criticality of the mission 

would determine which level of human involvement was the best.  If time was not a vital 

element to the mission, having a human and machine collaborate to create clusters would 

be the best course of action.  However, if planning time was very critical, the computer 

might be the best option.  Solutions generated by a human provide a good balance as they 

generate relatively high value at a fast time.       
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Figure 6-8: Summary of Wall Scenario Results 

 

6.2.2 Discussion   
When the computer was responsible for clustering the enemy targets, it generated 

numerous small clusters of the low value threatening targets (Medium SAMs) and no 

clusters involving the high valued targets.  Even though the TEL Support targets were 

worth considerably more, the computer could not find a safe and efficient way to attack 

these targets.  The computer algorithm deems these high value targets as “unavailable” 

because they are blocked by the wall of targets.  The high value targets are not clustered 

with any targets on the wall because the distance between the wall and the high value 

targets is very large.  Also, because the threats do not physically overlap the high value 

targets, there are no explicit CaP constraints (see Section 3.2.3 for discussion on CaP 

constraints).  The computer is limited by what the designers have programmed it to do, 

therefore in situations such as the Wall Scenario, the computer cannot generate the best 

solution.  This occurs because the algorithm does not take into account the “big picture” 

of the scenario and has limited ability to reason spatially.  In addition, humans can draw 

on past experiences and apply problem specific strategies to help with the clustering, 

while the computer cannot.  Figure 6-9 illustrates the resulting plan when the clustering is 

handled exclusively by the computer.   

In this particular scenario the human strengths of visual perception, pattern 

recognition, intuition, and strategic assessment (see Section 2.7.1.1 for a description of 

these strengths) allow the participants to understand that a plan can be created to “blow a 
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hole” through the wall of threats and subsequently attack the high valued targets.  This 

was accomplished by placing high value targets in the same cluster as a threat in the wall.  

By taking advantage of this ability to apply the appropriate “strategy,” the humans were 

able to generate superior solutions.  An example of one subject’s human-machine 

collaboration experiment is shown in Figure 6-10.   

 

 
Figure 6-9: Result of “Computer Only” Clustering the Wall Scenario 

 

 
Figure 6-10: Result with Human Involved in Clustering the Wall Scenario 
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It is possible that new logic could be added to the existing computer clustering 

algorithm in order for it to create solutions similar to those generated with human 

involvement.  However, for this to be effective, an exhaustive list of all intricacies in any 

possible scenario would have to be created and logic added to account for all of these 

potential scenario nuances.  Instead of this time consuming design and development task, 

we can tap into human strengths to identify strategies quickly to overcome problem-

specific aspects.   

 

6.3 Scenario #2 – Ring of Medium SAMs 
The Ring Scenario contains a medium number of targets and a medium amount of 

complexity.  The complexity in this scenario arises from multiple coverage.  A high value 

target (TEL Support with a value of 300) is covered by a low value target with a large 

threat radius (Long Launcher with a value of 25), which is itself covered by a 

combination of low value targets with small threat radii (Medium SAMs with a value of 

25).  Figure 6-11 provides a map layout of the scenario.     

 

Figure 6-11: Map Layout of Ring Scenario 
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6.3.1 Results of Ring Scenario 

 
Figure 6-12: Summary of Ring Scenario Results  

 
The results of the Ring Scenario are shown in Figure 6-12.  All three levels of automation 

generated quite similar values.  The differences in the solutions arise in the time and 

resource usage metrics.  The solutions with human involvement were able to attack the 

high valued target quicker and use fewer resources.  The amount of time taken to attack 

the high value target is less with a human involved because the human has most likely 

focused their attention on this target.  This results in the high value target being destroyed 

after an average of 2.67 hours in both the human only and human-machine collaboration 

experiments, while the computer only clustering took 3.11 hours to achieve the same 

result.  Figure 6-13 shows the accumulation of value over time when the clustering was 

done by the computer and the results from one human participant.  This graphic 

demonstrates that the human was able to generate the same amount of value but at a 

much quicker rate.       

   



 126

Simulation Time vs. Value Achieved
Ring Scenario

0

100

200

300

400

500

600

0 2 4 6

Simulation Time (hours)

Va
lu

e 
A

ch
ie

ve
d

Human
Computer

 
Figure 6-13: Simulation Time vs. Value Achieved in Ring Scenario 

 

 
 

Figure 6-14: Human vs. Computer Clustering of Ring Scenario 

 

Figure 6-14 illustrates the initial plans created with and without human participation in 

the clustering of enemy targets.  The human was able to create a cluster where only a 

small number of targets would be destroyed before the high value target could be 

attacked. 

 

Human Clustering Computer Clustering 
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6.4 Scenario #3 – Small Complex Scenario 
The Small Complex Scenario includes a small number of targets but a high degree of 

complexity.  The high complexity arises from several instances of multiple coverage.  

The scenario consists of five overlapping Long Launchers, each of which covers two 

Medium SAMs.  All seven threat targets also cover a high valued TEL Support.  Figure 

6-15 illustrates the map layout of the scenario.  This scenario was devised to test a 

human’s ability to de-conflict complicated threat coverage schemes.  As the figure shows, 

it is not visually obvious which threat ring corresponds to which Long Launcher.  This 

setup negates a human’s ability to identify “good” clusters quickly based on spatial 

reasoning alone.  Therefore, the computer only solution was hypothesized to outperform 

the human only or human-computer solutions.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-15: Map Layout of Small Complex Scenario 
 

6.4.1 Results of Small Complex Scenario 
The subjects employed two main clustering strategies in this scenario.  The most common 

approach was to give up on determining which threat radius corresponded to which target 

and simply cluster all of the targets together.  This tactic resulted in a total value of 40.  
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More ambitious subjects used the zooming function to de-conflict the overlapping targets.  

These subjects applied a more intelligent approach and broke the targets into a few small 

clusters.  Those that used this strategy accumulated a value of 100. 

 

6.4.2 Discussion 
The results for this scenario were unexpected.  The severe overlap of targets was 

designed specifically to confuse or overwhelm the human operator.  It was hypothesized 

that the solutions created using computer only or human-machine collaboration levels of 

automation would dominate.  However, Figure 6-16 shows that the best results were 

obtained when a human was exclusively in charge of creating the clusters of enemy 

targets.  The solutions involving human and machine interaction contained slightly less 

value but also took twice the amount of time.  The computer was not able to generate a 

plan that had a positive value and an acceptable amount of risk, therefore there is a 

column of zeros in Figure 6-16.  In effect, the complication of the scenario actually 

confused the computer more than it confused the human subjects.    

 

 
Figure 6-16: Summary of Small Complex Scenario Results 

 

In this scenario, the original “gut feeling” of the human proved to be the best 

course of action.  This is supported by the human only clusters, which resulted in the 

highest quality solutions.  In the human-machine collaboration experiments, the 
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additional Key Pieces of Information provided by the computer were enough to either 

mislead the human or shake their confidence in their original instinct.  The participants’ 

“gut feeling” resulted in better solutions than when they were given additional 

information to evaluate these solutions, suggesting that the additional information was 

actually detrimental to the human’s decision making process.  This outcome runs counter 

to the intuition that more information will lead to higher quality solutions.    

 

6.5 Scenario #4 – Large Simple Scenario 
The Large Simple Scenario entails a large number of targets and a low level of 

complexity.  The scenario contains thirty-four targets that are distributed to allow the 

targets to be visually separated based on inspection alone.  Even with the large number of 

targets, it was assumed that the humans would add significant benefit due to the visual 

groupings of targets.   

 

 
Figure 6-17: Map Layout of Large Simple Scenario 
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6.5.1 Results of Large Simple Scenario 

 
Figure 6-18: Summary of Large Simple Scenario Results 

 

Figure 6-18 summarizes the results for this scenario.  The experiments involving human-

machine collaboration produced the best results for this scenario.  These experiments, on 

average, generated the highest total value and had comparable numbers for the quantity 

of aircraft used and weapons loaded.  However, the human participants did make an 

interesting trade-off between risk and reward.  They appear to have been willing to accept 

more risk when there was a possibility for more value to be gained, portrayed by the 

higher attrition of aircraft in experiments with a human involved.  This may be because 

the operators were working with unmanned aerial vehicles as their assets.  They did not 

have to factor in the intangible cost of losing a human life.  It is likely that if the friendly 

resources instead were manned vehicles, the humans would not have been willing to 

accept this additional risk.  

 

6.5.2 Discussion 
The main downside to the “Human-Machine Collaboration” experiments is the extensive 

amount of time taken to create the initial solutions.  This is most likely attributed to the 

large number of targets in the scenario.  The amount of targets led to both the human 

participants and the machine algorithm creating numerous total clusters.  Once the users 

were presented with the KPI for each of the clusters, it took them a significant amount of 
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time to study, evaluate, and select the desired clusters.  For this scenario, the participants 

expressed concern that during human-machine collaboration, it was difficult to evaluate 

and select the options because there were so many different options to choose from.  One 

of the main problems the participants expressed was ensuring that separate clusters 

containing the same target were not chosen.  This concern with the number of options to 

evaluate ties back into the concept of human workload (see Evaluative Criteria in Section 

2.5.1).  These results suggest that achieving acceptable levels of human workload 

requires a delicate balance.  An operator might become overwhelmed if there are 

excessive amounts of information or decisions to be made.  In addition, the operator 

might become bored or too distracted if there is not enough work for them, leading to 

complacency or skill degradation [20].        

    

6.6 Scenario #5 – Challenge Scenario 
The Challenge Scenario was the final and most difficult scenario.  The scenario is 

illustrated in Figure 6-19.  It combined a large number of targets (Large Simple Scenario) 

with a high degree of complexity (Small Complex Scenario).  There are a total of 192 

enemy targets in the scenario and there is an enormous amount of complex coverage.  

The amount and degree of coverage is depicted with magnified views of the map layout 

in Figure 6-20.  In this section of the scenario, there are twenty-four targets positioned in 

a very small amount of space.  This arrangement makes it difficult for a human to 

visually interpret the relationships.  A human is not able to distinguish between the 

targets until this portion of the map is magnified significantly.  Once the zoom feature is 

used to recognize the targets adequately, it then becomes impossible to identify the range 

of the threat associated with each target.   

 

6.6.1 Hypothesis 
The humans were expected to be overwhelmed by the vast number of targets and varying 

degrees of threat coverage.  As a result, they were expected to create a small number of 

clusters based on the few areas that might be easily attacked.  In other words, within the 

large, complicated scenario, there are certain areas that a human could use spatial 



 132

reasoning to identify clusters of targets quickly that could easily be attacked.  Figure 6-21 

shows an example of this concept.  The targets that are identified by the arrows can be 

attacked with little to no risk while still generating a positive value of twenty-five points 

each to the overall solution.      

   

 
Figure 6-19: Map Layout of Challenge Scenario 

 
 
 
 

 

This area amplified 
in Figure 6-20. 
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Figure 6-20: Magnified View of a Section in Map Layout       
(Shows the Difficulty in Distinguishing Threats) 

 
 
 

 
 

Figure 6-21: “Picking Off the Low Hanging Fruit” 

 

6.6.2 Results of Challenge Scenario 
The number of clusters created in the human only experiments was relatively small 

compared to the total number of targets contained within the scenario.  There was an 

average of only 3.6 clusters created per human, each containing an average of 4.1 targets.  

This equates to only 14.76 (7.7%) out of the possible 192 targets being clustered in each 

of the experiments.  We expected this outcome due to the extreme complexity in the 
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scenario and the nature of the human only experiments.  Experiments run at this level of 

automation gave participants only one shot at clustering the enemy targets.  They had to 

base their decision solely on the map layout of the scenario.  Therefore, the participants 

clustered very few targets in the human only experiments because there were not a lot of 

clusters that could be formed from spatial reasoning alone. 

 The results for the Challenge Scenario are summarized in Figure 6-22.  The 

solutions created entirely by the computer generated the least amount of value, had the 

highest attrition of aircraft, and used the most resources (aircraft and weapons) out of the 

three levels of automation.  Human-machine interaction generated a higher value, used 

the least amount of resources, and fell in the middle with regards to aircraft attrition.  

When clustering was left exclusively to the humans, the solutions generated the highest 

value and had the least number of aircraft lost.  These solutions were created in 

approximately the same amount of time as the computer solutions.  A drawback to the 

“Human Only” solutions is the number of resources used.  On average, they used one 

more aircraft and had twenty-three more homing missiles loaded than HMCDM 

solutions.  However, in practice, unless the resources were in a limited supply, it is likely 

that a commander would prefer the additional value, less risk, and shorter planning time 

in comparison to the HMCDM solutions.  

 

 

Figure 6-22: Summary of Challenge Scenario Results 
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6.6.3 Discussion     
The human outperformed the human-machine collaboration in this scenario for the same 

reason as in the Small Complex Scenario.  It turns out that the original intuition of the 

human operators proved to be the best course of action.  Again, it is evident that the 

additional information provided in the KPI convinced the operators to change their minds 

about the compilation of the enemy target clusters. This outcome further supports the 

notion that more information does not always lead to higher quality solutions.    

It is also important to note that mental workload issues played a role in this 

scenario as well.  There was a significant amount of time between the humans entering 

clusters for more information and the actual KPI being calculated and displayed to the 

subjects.  This additional time can be attributed to the great number of targets resulting in 

numerous calculations for the computer.  The considerable break in action appeared to 

cause the users to become bored and lose their sharpness when selecting the options.  

Many of the participants had to re-familiarize themselves with their original inputted 

clusters before they started evaluating and selecting the clusters. 

 

6.7 General Discussion 
Overall, human-machine collaborative planning produced the best plans.  The human 

strengths of pattern recognition, intuition, and spatial reasoning were combined with the 

computer strengths of data organization and fast calculation in order to create higher 

quality solutions.  The additional time to create the human-machine plans can be 

attributed to the humans evaluating and studying the KPI produced by the computer to 

select cluster options.  This step was not part of the decision making algorithm in either 

the human only or computer only experiments.  However, in practice, the additional time 

expended is not an issue because it is only expended in the mission pre-planning phase.  

Therefore, the higher value and lower resource usage plans created by the human-

machine collaboration are preferred.   
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6.7.1 Confidence and Satisfaction in Solutions 
The added benefit from human-machine collaboration is not strictly confined to the 

quantitative increases in the values of the plans.  Each of the experiment participants 

expressed much more confidence in the solutions created with machine collaboration.  

This was the case even in the scenarios in which their human only clustering 

outperformed the clusters created with collaboration.  The additional feedback from the 

computer either solidified their stance on certain clusters or suggested alternative clusters 

that the human decided they liked better.  They acknowledged having a better 

understanding of the solution that was going to be created compared to the human only 

approach and felt more “in-the-loop” than the computer only method.   

 

6.7.2 Teams of Human Decision Makers 
There is also evidence to suggest that solution quality could be enhanced by having teams 

of humans interact with the machine instead of single users.  In many of the scenarios, 

there were certain subjects who would employ particular clustering strategies that 

resulted in superior results.  Figure 6-23 and Figure 6-24 show that the same participants 

did not consistently generate the best results.  There were many different top performers 

across each of the scenarios.  This suggests that allowing teams of humans to collaborate 

with a machine might result in the best possible solutions being obtained.  The 

highlighted entries in the figures correspond to the maximum value generated for each 

scenario 

 

Figure 6-23: Value Generated by each Participant in HMCDM Experiments 
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Figure 6-24: Value Generated by each Participant in Human Only Experiments 

 

Figure 6-25 shows the average value generated by the five participants for each 

scenario across the three levels of human-machine interaction using the human only score 

to normalize the values.  This graphic shows that HMCDM created, on average, 64.5% 

more value than solutions created with the exclusive use of the computer.  It also 

confirms that HMCDM solutions created 22.6% more value than human only solutions.  

On the other hand, Figure 6-26 shows the maximum value generated by one of the 

participants for each scenario across the three levels of interaction.  Again, the human 

only score is used to normalize the values.  This figure illustrates a much larger disparity 

between the values generated.  The maximum value generated by one of the participants 

using HMCDM is 127% higher than the value created by the computer and 25.6% higher 

than the maximum human only value.  It is possible that this additional value could be 

more consistently captured if the decisions were made by the collective team of 

participants instead of carrying out the decisions individually.   
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Figure 6-25: Average Value Created in each Scenario:                                   

Normalized by “Human Only” Score 
 
 

 

Figure 6-26: Maximum Value Created in each Scenario:                                   
Normalized by “Human Only” Score 

 

6.7.3 Effects of the Graphical User Interface 
The focus of this experiment was not on display design.  However, the interface could be 

designed to mitigate some of the effects found in the human-machine collaboration 

experiments.  There are many alterations to the GUI that could possibly increase the 

efficiency and effectiveness of the experiments.  These adjustments are based on 

observations during the experiments as well as participant suggestions.   



 139

One design option would be the further development of the KPI display.  In the 

GUIs’ current form, the KPI are displayed through the use of an Excel spreadsheet (see 

Figure 5-11).  This design was chosen to allow the users to compare each element of the 

KPI for the different options.  However, this display could be improved to allow the 

operators to more easily compare de-conflicting options of clusters.  The current design 

was limited for scenarios with a large number of targets.  In these scenarios, the 

considerable number of targets resulted in many clusters containing the same targets.  

This led to the human participants taking a long time to study and select options.  Figure 

6-27  presents a breakdown of the amount of time spent on the KPI evaluation and option 

selection for each of the five scenarios.  A design with a relatively quick and simple 

method for the users to identify if they are about to select multiple options that contain 

the same target would most likely reduce the time to select options. 

Participants also spent a considerable amount of time trying to relate the options 

in the spreadsheet view and their corresponding locations on the map.  A possible 

solution to this problem would be to provide a direct link between the displayed KPI for 

each option and the map layout of the targets.  The users should be able to select an 

option and have all of the targets within this option become highlighted on the map view.  

This could be done by changing the color of the associated targets within the selected 

option. 

 

 

Figure 6-27: Time to Select Options in Human-Machine Collaboration Experiments 
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6.7.4 Option Selection 
In the beginning of Chapter 6, it was mentioned that the human participants ultimately 

selected 60.6% of the clusters they created while only choosing 18.3% of the computer 

generated clusters.  Figure 6-28 provides additional information, detailing the percentage 

of clusters selected in each of the five scenarios.  The data suggests that the human 

participants are less likely to select their own clusters in situations containing a large 

number of targets.  This is evidenced by the small difference in the percentage of clusters 

selected in the Large Simple and Challenge Problem scenarios.  A somewhat unexpected 

result is that it appears the complexity in the scenario does not have a negative effect on 

humans selecting their own clusters.  Aside from the Challenge Problem, the Small 

Complex and Ring scenarios were the only other scenarios with a medium or high level of 

complexity.  In both of these scenarios, there was actually a large differential in favor of 

selecting human created clusters.  It may be that in complex scenarios, the computer did 

not provide enough information in the KPI for the human to fully trust the computer 

generated options.  This phenomenon would then have caused the humans to rely on the 

clusters they created themselves, which they understand better.    

 

 
Figure 6-28: Percentage of Human and Computer Created Clusters Ultimately 

Chosen by the Human Participants for Inclusion in the Final Plan in each Scenario 
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6.7.5 Quality of Options vs. Number of Options 
We also studied the relationship between the value generated in the solution and the 

number of options the subject had to choose from in the human-machine collaboration 

experiments.  Figure 6-29, Figure 6-30, Figure 6-31, Figure 6-32, and Figure 6-33 depict 

the results from each of the five scenarios.  These results suggest that the key to creating 

solutions with higher value is not the number of options, rather it is the quality of options 

to choose from.  Many of the participants expressed difficulty evaluating and selecting 

options when there were a large number of options.  The only scenario with an apparent 

linear relationship between the number of options and value generated was the Small 

Complex Scenario (see Figure 6-31).  This scenario also contained the least number of 

options for the subjects to select from.  

 

Value Generated 
vs. 

Number of Options to Select From
Wall Scenario

0
200
400
600
800

1000
1200

10.5 11 11.5 12 12.5 13 13.5

Number of Options

Va
lu

e 
G

en
er

at
ed Participant #1

Participant #2
Participant #3
Participant #4
Participant #5

 

Figure 6-29: Comparison of Value Generated and Number of Options                   
Wall Scenario 
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Figure 6-30: Comparison of Value Generated and Number of Options                   
Ring Scenario 
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Figure 6-31: Comparison of Value Generated and Number of Options                   

Small Complex Scenario 
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Figure 6-32: Comparison of Value Generated and Number of Options                   

Large Simple Scenario 
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Figure 6-33: Comparison of Value Generated and Number of Options                   

Challenge Scenario 

 

6.7.6 Human and Computer Thought Processes 
We also examined the amount of overlap in the clusters created by a human versus those 

by the computer.  This would give us some insight into how similar the two were 

“thinking.”  A large amount of overlap would imply that the benefit from inserting a 
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human-in-the-loop was minimal.  Figure 6-34 shows that an extremely low number of 

identical clusters were created by both the human and computer.  In fact, identical 

clusters were only created in one of the five scenarios and, even in that case, the average 

was less than one matching cluster per subject.  The diverse clusters created by the 

humans and machines stress the importance for human-machine collaboration in order to 

produce the broadest range of clusters. 

 

 

Figure 6-34: Avg. Number of Identical Clusters Created in Each Scenario 
 

6.7.7 Effect on Repeatability and Predictability 
A potential drawback of human involvement is the impact on repeatability or 

predictability.  Regardless of the number of times a specific scenario is run, the computer 

will always generate the same plan.  The involvement of a human in the decision making 

process removes this predictability in the planning process.  Each user has a different 

tolerance for risk and a different outlook on the trade-off between factors such as time, 

resource usage, risk, and value generated.  For example, some humans might be willing 

to subject the UAVs to a large amount of risk because there are no human lives directly at 

stake while others are not willing to do so even if there is a potential for a large amount 

of value to be gained.     
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Chapter 7  
 

Summary & Future Work 
 

This research has focused upon the application of using HMCDM in a large-scale, 

complex optimization problem in an effort to generate more valuable solutions more 

quickly.  This chapter serves as a summary of the work presented in this thesis as well as 

offering suggestions for future research.   

 

7.1 Summary 
Typical human-machine approaches start with a human process and augment it with 

decision-support, or start with an automated process and augment it with operator input.  

We provided an alternative to these approaches by presenting an HMCDM methodology 

that addressed collaboration from the outset of the decision-making design process.  We 

updated and built upon previously accepted lists of human and computer strengths and 

capabilities.  We built upon previous research to propose a methodology for determining 

the optimal level of automation when allocating decisions in a system or algorithm.  We 

introduced a method for combining traditional goal decomposition with composite 

variable formulation into an Iterative Composite Variable Approach for solving large-

scale optimization problems.  We applied HMCDM and an introductory version of the 

Iterative Composite Variable Approach to a complex military resource allocation and 

planning problem and showed through experimentation the potential for improvement in 

the quality and speed of solutions.   

In conclusion, our results suggest that it is possible to combine the strengths of a 

human and a computer synergistically to create better solutions to a large-scale, complex 

optimization problem (specifically a resource allocation and planning problem) than 
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those that either could produce alone.  Future C2 planning systems can be improved if the 

humans and machines are fully integrated in a way that takes advantage of the strengths 

of both. 

 

7.2 Future Work 
In this section we provide suggestions for future research in applying HMCDM in large-

scale, complex optimization problems. 

 
ADDITIONS IN THE SPECIFIC RESOURCE ALLOCATION AND PLANNING PROBLEM 
There are numerous logical extensions to the amount and type of human involvement in 

the resource allocation and planning system explored in this thesis, particularly in the 

creation of the composite variables.  In addition to having the human involved with the 

creation of the clusters during the initial planning cycle, it might also be beneficial to 

allow the human to participate in this activity during each of the re-planning periods.  

Other possibilities include performing HMCDM in the sequencing of targets, creation of 

aircraft teams, and routing of individual aircraft.  Discussion of these areas are given at 

the end of Chapter 3.  In order to determine which of these options for human 

involvement add value to C2 planning and resource allocation, further experiments would 

need to be conducted with different combinations of the possibilities described above. 

 
MORE ITERATIONS IN ITERATIVE COMPOSITE VARIABLE APPROACH 
The human machine collaboration experiments conducted for this research were a first 

attempt at applying HMCDM to an Iterative Composite Variable Approach.  In the 

experiments, only one iteration was performed with HMCDM in the creation and 

updating of the composite variables contained within the pool of composites.  Future 

research could investigate the effects of additional iterations. 

 
FURTHER DEVELOPMENT OF KPI INTO SENSITIVITIES 
The HMCDM experiments in this thesis provided human test subjects with Key Pieces of 

Information about the initial set of composite variables to test if a human could process 

this information and draw conclusions about how to change or alter the composites 

within the composite pool to generate a better solution.  These KPI are not traditional 

sensitivities in that the subjects were not explicitly informed how the altering of the 
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composites would affect the overall solution.  We provided information which we 

deemed important (KPI) and relied on the human to draw conclusions about how the 

composites might be altered in an effort to produce a better solution.  If instead, true 

sensitivities were provided to the human, the combination of HMCDM and an Iterative 

Composite Variable Approach might prove to be even more beneficial in solving large-

scale, complex optimization problems.   

 
BETTER USER INTERFACE 
Enhancements in the graphical user interface might allow for more intelligent or efficient 

methods of combining human and computer strengths into a HMCDM process.  In 

particular, the display of KPI or sensitivities could be improved. 

 
ALTER THE METHOD OF HUMAN-MACHINE COLLABORATION IN CREATION OF 
COMPOSITES 
The current method for human-machine interaction in our research resulted in the 

computer creating composites (clusters) independently using its own algorithm.  An 

enhancement of this method would be to alter the computers process for creating its 

initial set of composites.  One idea is to have the computer attempt to create “similar” 

clusters to those created by the human.  If a computer were to be able to understand why 

a human considered their own clusters good, they might be able to intelligently perturb 

the human generated clusters and offer more good composites to the composite pool.  
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